Spectrum analysis of moving average operator and construction of time-frequency hybrid sequence operator

PurposeThe purpose of this paper is to analyze the spectral characteristics of moving average operator and to propose a novel time-frequency hybrid sequence operator.Design/methodology/approachFirstly, the complex data is converted into frequency domain data by Fourier transform. An appropriate frequency domain operator is constructed to eliminate the impact of disturbance. Then, the inverse Fourier transform transforms the frequency domain data in which the disturbance is removed, into time domain data. Finally, an appropriate moving average operator of N items is selected based on spectral characteristics to eliminate the influence of periodic factors and noise.FindingsThrough the spectrum analysis of the real-time data sensed and recorded by microwave sensors, the spectral characteristics and the ranges of information, noise and shock disturbance factors in the data can be clarified.Practical implicationsThe real-time data analysis results for a drug component monitoring show that the hybrid sequence operator has a good effect on suppressing disturbances, periodic factors and noise implied in the data.Originality/valueFirstly, the spectral analysis of moving average operator and the novel time-frequency hybrid sequence operator were presented in this paper. For complex data, the ideal effect is difficult to achieve by applying the frequency domain operator or time domain operator alone. The more satisfactory results can be obtained by time-frequency hybrid sequence operator.