Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations
暂无分享,去创建一个
[1] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[2] Alessandro Reali,et al. GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..
[3] L. Beirão da Veiga,et al. Analysis-suitable T-splines of arbitrary degree : definition and properties , 2012 .
[4] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[5] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[6] Thomas J. R. Hughes,et al. n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .
[7] Giancarlo Sangalli,et al. ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .
[8] T. Hughes,et al. Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .
[9] T. Hughes,et al. Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .
[10] Dietrich Braess,et al. Equilibrated residual error estimator for edge elements , 2007, Math. Comput..
[11] Annalisa Buffa,et al. Algebraic convergence for anisotropic edge elements in polyhedral domains , 2005, Numerische Mathematik.
[12] Giancarlo Sangalli,et al. Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.
[13] Joachim Schöberl,et al. Exact Sequences of High Order Hardy Space Infinite Elements for Exterior Maxwell Problems , 2013, SIAM J. Sci. Comput..
[14] Falai Chen,et al. On the instability in the dimension of splines spaces over T-meshes , 2011, Comput. Aided Geom. Des..
[15] Tom Lyche,et al. Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .
[16] John A. Evans,et al. Isogeometric divergence-conforming b-splines for the darcy-stokes-brinkman equations , 2013 .
[17] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[18] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[19] Daniele Boffi. Approximation of eigenvalues in mixed form, Discrete Compactness Property, and application to hp mixed finite elements , 2007 .
[20] M. Costabel,et al. Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .
[21] G. Sangalli,et al. IsoGeometric analysis using T-splines on two-patch geometries , 2011 .
[22] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[23] T. Hughes,et al. Converting an unstructured quadrilateral mesh to a standard T-spline surface , 2011 .
[24] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[25] Hendrik Speleers,et al. Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .
[26] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[27] M. Clemens,et al. Computational electromagnetic-field calculation with the finite-integration method , 1999 .
[28] Bernard Mourrain,et al. On the dimension of spline spaces on planar T-meshes , 2010, Math. Comput..
[29] Elaine Cohen,et al. Volumetric parameterization and trivariate B-spline fitting using harmonic functions , 2009, Comput. Aided Geom. Des..
[30] L. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communications.
[31] Luca F. Pavarino,et al. Overlapping Schwarz Methods for Isogeometric Analysis , 2012, SIAM J. Numer. Anal..
[32] Francesca Rapetti,et al. Whitney Forms of Higher Degree , 2009, SIAM J. Numer. Anal..
[33] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[34] Ahmed Ratnani,et al. An Arbitrary High-Order Spline Finite Element Solver for the Time Domain Maxwell Equations , 2012, J. Sci. Comput..
[35] D. Boffi,et al. Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .
[36] Thomas J. R. Hughes,et al. Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..
[37] Ralf Hiptmair,et al. Discrete Hodge operators , 2001, Numerische Mathematik.
[38] Carretera de Valencia,et al. The finite element method in electromagnetics , 2000 .
[39] Michael A. Scott,et al. T-splines as a design-through-analysis technology , 2011 .
[40] D. Arnold,et al. Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.
[41] Giancarlo Sangalli,et al. Analysis-Suitable T-splines are Dual-Compatible , 2012 .
[42] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[43] Victor M. Calo,et al. The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements , 2012, SIAM J. Sci. Comput..
[44] Serge Nicaise,et al. Edge Elements on Anisotropic Meshes and Approximation of the Maxwell Equations , 2001, SIAM J. Numer. Anal..
[45] Tom Lyche,et al. T-spline Simplication and Local Renement , 2004 .
[46] Annalisa Buffa,et al. Isogeometric Analysis for Electromagnetic Problems , 2010, IEEE Transactions on Magnetics.
[47] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[48] John A. Evans,et al. ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .
[49] M. Scott,et al. On the Nesting Behavior of T-splines , 2011 .
[50] Ernst Rank,et al. Geometric modeling, isogeometric analysis and the finite cell method , 2012 .
[51] A. Bossavit. Discretization of Electromagnetic Problems: The “Generalized Finite Differences” Approach , 2005 .
[52] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[53] Thomas Weiland,et al. Efficient modelling techniques for complicated boundary conditions applied to structured grids , 2004 .
[54] Giancarlo Sangalli,et al. Characterization of analysis-suitable T-splines , 2015, Comput. Aided Geom. Des..
[55] G. Sangalli,et al. Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .
[56] Alessandro Reali,et al. Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .
[57] Snorre H. Christiansen,et al. A dual finite element complex on the barycentric refinement , 2005, Math. Comput..
[58] G. Sangalli,et al. Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .
[59] Michael E. Mortenson,et al. Geometric Modeling , 2008, Encyclopedia of GIS.
[60] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[61] John A. Evans,et al. Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem , 2012 .
[62] T. Hughes,et al. Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .
[63] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[64] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[65] Bert Jüttler,et al. IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.
[66] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[67] Peter Wriggers,et al. A large deformation frictional contact formulation using NURBS‐based isogeometric analysis , 2011 .
[68] G. Sangalli,et al. IsoGeometric Analysis using T-splines , 2012 .
[69] Victor M. Calo,et al. Isogeometric Variational Multiscale Large-Eddy Simulation of Fully-developed Turbulent Flow over a Wavy Wall , 2012 .
[70] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[71] Giancarlo Sangalli,et al. Anisotropic NURBS approximation in isogeometric analysis , 2012 .
[72] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[73] Giancarlo Sangalli,et al. Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..
[74] Manfred Bischoff,et al. Numerical efficiency, locking and unlocking of NURBS finite elements , 2010 .
[75] Gershon Elber,et al. Geometric modeling with splines - an introduction , 2001 .
[76] John A. Evans,et al. Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .
[77] Victor M. Calo,et al. The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers , 2012 .
[78] Giancarlo Sangalli,et al. IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .