MCMC estimation and some model-fit analysis of multidimensional IRT models

A Bayesian procedure to estimate the three-parameter normal ogive model and a generalization of the procedure to a model with multidimensional ability parameters are presented. The procedure is a generalization of a procedure by Albert (1992) for estimating the two-parameter normal ogive model. The procedure supports analyzing data from multiple populations and incomplete designs. It is shown that restrictions can be imposed on the factor matrix for testing specific hypotheses about the ability structure. The technique is illustrated using simulated and real data.

[1]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[2]  Pao-Kuei Wu,et al.  MISSING RESPONSES AND IRT ABILITY ESTIMATION: OMITS, CHOICE, TIME LIMITS, AND ADAPTIVE TESTING , 1996 .

[3]  Robert J. Mislevy,et al.  Bayes modal estimation in item response models , 1986 .

[4]  D. Lawley,et al.  XXIII.—On Problems connected with Item Selection and Test Construction , 1943, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[5]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[6]  Robert J. Mislevy,et al.  BILOG 3 : item analysis and test scoring with binary logistic models , 1990 .

[7]  Richard J. Patz,et al.  A Straightforward Approach to Markov Chain Monte Carlo Methods for Item Response Models , 1999 .

[8]  Wendy M. Yen,et al.  Effects of Local Item Dependence on the Fit and Equating Performance of the Three-Parameter Logistic Model , 1984 .

[9]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[10]  Eric T. Bradlow,et al.  MML and EAP Estimation in Testlet-based Adaptive Testing , 2000 .

[11]  R. Hambleton,et al.  Handbook of Modern Item Response Theory , 1997 .

[12]  Mark D. Reckase,et al.  A Linear Logistic Multidimensional Model for Dichotomous Item Response Data , 1997 .

[13]  J. Albert Bayesian Estimation of Normal Ogive Item Response Curves Using Gibbs Sampling , 1992 .

[14]  E. B. Andersen,et al.  A goodness of fit test for the rasch model , 1973 .

[15]  Henk Kelderman,et al.  Item bias detection using loglinear irt , 1989 .

[16]  Cees A. W. Glas,et al.  DETECTION OF DIFFERENTIAL ITEM FUNCTIONING USING LAGRANGE MULTIPLIER TESTS , 1996 .

[17]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[18]  Mark Reiser,et al.  Analysis of residuals for the multionmial item response model , 1996 .

[19]  Cees A. W. Glas Modification Indices for the 2PL and the Nominal Response Model. Research Report 98-04. , 1998 .

[20]  W. M. Yen Using Simulation Results to Choose a Latent Trait Model , 1981 .

[21]  Terry A. Ackerman Developments in Multidimensional Item Response Theory , 1996 .

[22]  J. Tukey,et al.  Multiple-Factor Analysis , 1947 .

[23]  Klaas Sijtsma,et al.  Methodology Review: Nonparametric IRT Approaches to the Analysis of Dichotomous Item Scores , 1998 .

[24]  R. Darrell Bock,et al.  High-dimensional Full-information Item Factor Analysis , 1997 .

[25]  William Stout,et al.  A nonparametric approach for assessing latent trait unidimensionality , 1987 .

[26]  N. D. Verhelst,et al.  Extensions of the partial credit model , 1989 .

[27]  Mark D. Reckase,et al.  The Difficulty of Test Items That Measure More Than One Ability , 1985 .

[28]  Frederic M. Lord,et al.  Comparison of IRT True-Score and Equipercentile Observed-Score "Equatings" , 1984 .

[29]  Noel A Cressie,et al.  Characterizing the manifest probabilities of latent trait models , 1983 .

[30]  E. Muraki,et al.  Full-Information Item Factor Analysis , 1988 .

[31]  Roderick P. McDonald,et al.  Linear Versus Models in Item Response Theory , 1982 .

[32]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[33]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[34]  P. Rosenbaum Testing the conditional independence and monotonicity assumptions of item response theory , 1984 .

[35]  Gerhard H. Fischer,et al.  Derivations of the Rasch Model , 1995 .

[36]  Frank B. Baker,et al.  An Investigation of the Item Parameter Recovery Characteristics of a Gibbs Sampling Procedure , 1998 .

[37]  William Stout,et al.  A New Item Response Theory Modeling Approach with Applications to Unidimensionality Assessment and Ability Estimation , 1990 .

[38]  H. Kelderman,et al.  Loglinear Rasch model tests , 1984 .

[39]  Terry Ackerman,et al.  Graphical Representation of Multidimensional Item Response Theory Analyses , 1996 .

[40]  F. Lord An application of confidence intervals and of maximum likelihood to the estimation of an examinee's ability , 1953 .

[41]  Eric T. Bradlow,et al.  A Bayesian random effects model for testlets , 1999 .

[42]  R. P. McDonald,et al.  Nonlinear factor analysis. , 1967 .

[43]  Jian Qing Shi,et al.  Bayesian sampling‐based approach for factor analysis models with continuous and polytomous data , 1998 .

[44]  Roderick P. McDonald,et al.  Normal-Ogive Multidimensional Model , 1997 .

[45]  Xiao-Li Meng,et al.  Fitting Full-Information Item Factor Models and an Empirical Investigation of Bridge Sampling , 1996 .

[46]  Brian W. Junker,et al.  Applications and Extensions of MCMC in IRT: Multiple Item Types, Missing Data, and Rated Responses , 1999 .

[47]  G. Rasch,et al.  On Specific Objectivity. An Attempt at Formalizing the Request for Generality and Validity of Scientific Statements in Symposium on Scientific Objectivity, Vedbaek, Mau 14-16, 1976. , 1977 .

[48]  Cees A. W. Glas,et al.  The derivation of some tests for the rasch model from the multinomial distribution , 1988 .

[49]  Robert J. Mislevy Bayes modal estimation in item response models , 1986 .

[50]  Frederic M. Lord THE RELATION OF TEST SCORE TO THE TRAIT UNDERLYING THE TEST , 1952 .

[51]  I. W. Molenaar,et al.  A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks , 1997 .

[52]  James E. Carlson,et al.  Full-Information Factor Analysis for Polytomous Item Responses , 1995 .

[53]  P. Rosenbaum,et al.  Conditional Association and Unidimensionality in Monotone Latent Variable Models , 1985 .

[54]  R. Darrell Bock,et al.  Multiple Group IRT , 1997 .

[55]  Cees A. W. Glas,et al.  Tests of Fit for Polytomous Rasch Models , 1995 .

[56]  J. Fox,et al.  Bayesian estimation of a multilevel IRT model using gibbs sampling , 2001 .

[57]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[58]  Howard Wainer,et al.  Testlet Response Theory: An Analog for the 3PL Model Useful in Testlet-Based Adaptive Testing , 2000 .

[59]  G. J. Mellenbergh,et al.  Generalized linear item response theory. , 1994 .

[60]  Brian W. Junker,et al.  Essential independence and likelihood-based ability estimation for polytomous items , 1991 .