Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II [1]. Analysis of the Inorganic Crystal Structure Database (ICSD)

Abstract Interpenetration in metal-organic and inorganic networks has been investigated by a systematic analysis of the crystallographic structural databases. We have used a version of TOPOS (a package for multipurpose crystallochemical analysis) adapted for searching for interpenetration and based on the concept of Voronoi–Dirichlet polyhedra and on the representation of a crystal structure as a reduced finite graph. In this paper, we report comprehensive lists of interpenetrating inorganic 3D structures from the Inorganic Crystal Structure Database (ICSD), inclusive of 144 Collection Codes for equivalent interpenetrating nets, analyzed on the basis of their topologies. Distinct Classes, corresponding to the different modes in which individual identical motifs can interpenetrate, have been attributed to the entangled structures. Interpenetrating nets of different nature as well as interpenetrating H-bonded nets were also examined.

[1]  S. Fiechter,et al.  The structure of tantalum disulfide thiophosphate Ta[PS4|S2] , 1980 .

[2]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: semiregular nets. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[3]  Vladislav A. Blatov,et al.  Analysis of environment of alkali atoms in oxygen-containing compounds with Voronoi-Dirichlet polyhedra , 1998 .

[4]  Hawthorne,et al.  Metastructures: homeomorphisms between complex inorganic structures and three-dimensional nets. , 1999, Acta crystallographica. Section B, Structural science.

[5]  R. Nesper,et al.  On tilings and patterns on hyperbolic surfaces and their relation to structural chemistry. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  Gautam R. Desiraju,et al.  The Weak Hydrogen Bond , 2001 .

[7]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[8]  A. F. Wells Three-dimensional nets and polyhedra , 1977 .

[9]  O. Yaghi,et al.  Three-periodic nets and tilings: minimal nets. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[10]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[11]  W. Jung,et al.  Li2Pd3B and Li2Pt3B : Ternary lithium borides of palladium and platinum with boron in octahedral coordination , 1997 .

[12]  Michael O'Keeffe,et al.  The CdSO4, rutile, cooperite and quartz dual nets: interpenetration and catenation , 2003 .

[13]  A. Blake,et al.  Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands , 2001 .

[14]  M. Farissi,et al.  NaBi2Sb3O11: An Ordered Structure Related to the Cubic KSbO3 Type. , 1996 .

[15]  A. Mosset,et al.  Crystal engineering strategy of thiocyanates for quadratic nonlinear optics. Hg3CdCl2(SCN)6 and Hg4CdBr4(SCN)6 , 2002 .

[16]  Stephen T. Hyde,et al.  Polycontinuous morphologies and interwoven helical networks , 2000 .

[17]  Cheetham,et al.  Open-Framework Inorganic Materials. , 1999, Angewandte Chemie.

[18]  Stuart R. Batten,et al.  Topology of interpenetration , 2001 .

[19]  V. Blatov Voronoi–dirichlet polyhedra in crystal chemistry: theory and applications , 2004 .

[20]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[21]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[22]  D. Carré,et al.  Structure cristalline de l'iodure de zinc ZnI2 , 1978 .

[23]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[24]  M. Touboul,et al.  Dehydration Process of TlB5O6(OH)4·2H2O and Crystal Structure of TlB5O8 , 1998 .

[25]  Alexander J. Blake,et al.  Inorganic crystal engineering using self-assembly of tailored building-blocks , 1999 .

[26]  Davide M. Proserpio,et al.  POLYCATENATION, POLYTHREADING AND POLYKNOTTING IN COORDINATION NETWORK CHEMISTRY , 2003 .

[27]  Stephen T. Hyde,et al.  From 2D hyperbolic forests to 3D Euclidean entangled thickets , 2000 .

[28]  W. H. Baur,et al.  Tetrahedral Frameworks of Zeolites, Clathrates and Related Materials , 2000 .

[29]  Davide M Proserpio,et al.  Three novel interpenetrating diamondoid networks from self-assembly of 1,12-dodecanedinitrile with silver(I) salts. , 2002, Chemistry.

[30]  Davide M. Proserpio,et al.  Borromean links and other non-conventional links in ‘polycatenated’ coordination polymers: re-examination of some puzzling networks , 2003 .

[31]  V. Blatov,et al.  Comparative topological analysis of simple anhydrous borates, carbonates and nitrates , 2002 .

[32]  M. Pierrot,et al.  Etude structurale de la série des hexacyanoferrates(II,III) d'hydrogène: H3+x[FeIIxFeIII1−x(CN)6].yH2O. I. Structures cristallines des phases hexagonales H, H3FeIII(CN)6 et H3CoIII(CN)6, par diffraction des rayons X et des neutrons , 1972 .

[33]  G. Thimm Crystal structures and their enumeration via quotient graphs , 2004 .

[34]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: regular and quasiregular nets. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[35]  Michael O'Keeffe,et al.  Identification of and symmetry computation for crystal nets. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[36]  Z. Assefa,et al.  Europium(III) Tris[dicyanoargentate(I)] Trihydrate, Eu[Ag(CN)2]3.3H2O , 1995 .

[37]  V. N. Serezhkin,et al.  THE METHOD OF INTERSECTING SPHERES FOR DETERMINATION OF COORDINATION NUMBERS OF ATOMS IN CRYSTAL STRUCTURES , 1997 .

[38]  Joseph V. Smith,et al.  Topochemistry of zeolites and related materials. 1. Topology and geometry , 1988 .

[39]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[40]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.

[41]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[42]  Stephen T. Hyde,et al.  Meditation on an engraving of Fricke and Klein (the modular group and geometrical chemistry) , 2003 .

[43]  V. Robins,et al.  2D hyperbolic groups induce three-periodic Euclidean reticulations , 2004 .

[44]  Gautam R. Desiraju,et al.  The Weak Hydrogen Bond: In Structural Chemistry and Biology , 1999 .

[45]  A. P. Shevchenko,et al.  TOPOS3.2: a new version of the program package for multipurpose crystal- chemical analysis , 2000 .

[46]  E. Koch,et al.  Crystal structures. I. Patterns and symmetry , 1997 .