Properties of GaAs on Si grown by molecular beam epitaxy

Abstract For several years, there has been a great deal of activity in the growth of GaAs and other compounds on Si substrates for several reasons. Among them are the high quality, low cost, high thermal conductivity, and mechanical strength offered by Si substrates. For example, if we compare the cost of GaAs and Si wafers, the Si substrate can be regarded as free. Presently, 3 in. is the maximum GaAs wafer diameter in comparison to the current 8-in. and expected 10-in. Si wafer sizes. The growth of GaAs on such Si wafers is an advantageous way of growing GaAs on large-diameter wafers. But the second, and most exciting motivation for GaAs on Si, is the hybridization of Si and GaAs technologies on the same wafer. GaAs and Si technology are highly complementary and compatible. The advantage of Si over GaAs is its highly developed processing technology and the very high integration density of circuits available. The advantage of GaAs over Si is its intrinsically higher performance potential and its optical ...

[1]  J. P. Gowers TEM image contrast from antiphase domains in GaAs: Ge(001) grown by MBE , 1984 .

[2]  R. E. Hayes,et al.  Growth and patterning of GaAs/Ge single crystal layers on Si substrates by molecular beam epitaxy , 1984 .

[3]  Takashi Nishioka,et al.  GaAs Light Emitting Diodes Fabricated on SiO2/Si Wafers , 1983 .

[4]  B‐Y. Tsaur,et al.  Metal‐semiconductor field‐effect transistors fabricated in GaAs layers grown directly on Si substrates by molecular beam epitaxy , 1984 .

[5]  J. W. Matthews,et al.  Defects in epitaxial multilayers: II. Dislocation pile-ups, threading dislocations, slip lines and cracks , 1975 .

[6]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[7]  T. H. Windhorn,et al.  Monolithic integration of GaAs/AlGaAs double-heterostructure LED's and Si MOSFET's , 1986, IEEE Electron Device Letters.

[8]  A Yariv,et al.  Continuous-wave operation of extremely low-threshold GaAs/AlGaAs broad-area injection lasers on (100) Si substrates at room temperature. , 1987, Optics letters.

[9]  Northrup,et al.  Symmetric arsenic dimers on the Si(100) surface. , 1986, Physical review letters.

[10]  H. Morkoc,et al.  A dc and microwave comparison of GaAs MESFET's on GaAs and Si substrates , 1986, IEEE Transactions on Electron Devices.

[11]  H. Kroemer,et al.  Molecular beam epitaxial growth of GaAs on Si(211) , 1985 .

[12]  R. Fischer,et al.  III–V semiconductors on Si substrates: New directions for heterojunction electronics , 1986 .

[13]  G. Y. Robinson,et al.  Optical properties of GaAs on (100) Si using molecular beam epitaxy , 1984 .

[14]  C. C. Chang,et al.  Contaminants on chemically etched silicon surfaces: LEED-Auger method , 1970 .

[15]  H. Morkoç,et al.  A study of high-speed normally off and normally on Al0.5Ga0.5As heterojunction gate GaAs FET's (HJFET) , 1978, IEEE Transactions on Electron Devices.

[16]  Hadis Morkoç,et al.  Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si , 1986 .

[17]  H. Morkoç,et al.  High-performance self-aligned gate (Al,Ga)As/GaAs MODFET's on MBE Layers grown on , 1986, IEEE Electron Device Letters.

[18]  Tetsuo Soga,et al.  AlGaAs/GaAs DH Lasers on Si Substrates Grown Using Super Lattice Buffer Layers by MOCVD , 1985 .

[19]  H. Morkoc,et al.  High-quality GaAs MESFET's grown on Silicon substrates by molecular-beam epitaxy , 1985, IEEE Electron Device Letters.

[20]  Ihm,et al.  Biatomic steps on (001) silicon surfaces. , 1986, Physical review letters.

[21]  B. G. Yacobi,et al.  Growth and characterization of GaAs/Ge epilayers grown on Si substrates by molecular beam epitaxy , 1985 .

[22]  H. Kroemer,et al.  Reduction of oxides on silicon by heating in a gallium molecular beam at 800 °Ca) , 1980 .

[23]  J. Lee,et al.  Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates , 1987 .

[24]  H. Shichijo,et al.  GaAs/AlGaAs heterojunction emitter-down bipolar transistors fabricated on GaAs-on-Si substrate , 1987, IEEE Electron Device Letters.

[25]  H. Morkoç,et al.  Investigation of GaAs/AlxGa1−xAs and InyGa1−yAs/GaAs superlattices on Si substrates , 1987 .

[26]  T. H. Windhorn,et al.  Room‐temperature operation of GaAs/AlGaAs diode lasers fabricated on a monolithic GaAs/Si substrate , 1985 .

[27]  S. Wright,et al.  Molecular beam epitaxial growth of GaP on Si , 1984 .

[28]  R. Fischer,et al.  GaAs/AlGaAs multiquantum wells grown on nonpolar semiconductor substrates , 1985 .

[29]  H. Morkoç,et al.  Observation of GaAs/Si Epitaxial Interfaces by Atomic Resolution Electron Microscopy , 1986 .

[30]  G. Metze,et al.  GaAs MESFET's fabricated on monolithic GaAs/Si substrates , 1984, IEEE Electron Device Letters.

[31]  K. Wecht,et al.  Significant improvement in crystalline quality of molecular beam epitaxially grown GaAs on Si (100) by rapid thermal annealing , 1986 .

[32]  Naresh Chand,et al.  GaAs bipolar transistors grown on (100) Si substrates by molecular beam epitaxy , 1985 .

[33]  H. Morkoç,et al.  Photoluminescence microscopy of epitaxial GaAs on Si , 1987 .

[34]  R. Kaplan,et al.  LEED study of the stepped surface of vicinal Si (100) , 1980 .

[35]  C. Fonstad,et al.  Growth of high quality GaAs layers directly on Si substrate by molecular‐beam epitaxy , 1987 .

[36]  M. Kawabe,et al.  Initial Stage and Domain Structure of GaAs Grown on Si(100) by Molecular Beam Epitaxy , 1987 .

[37]  Wei Wang,et al.  Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100) , 1984 .

[38]  R. Fischer,et al.  Study of heteroepitaxial interfaces by atomic resolution electron microscopy , 1986 .

[39]  A. Cho Epitaxy by periodic annealing , 1969 .

[40]  W. Kopp,et al.  GaAs/AlGaAs MODFET's grown on , 1984, IEEE Electron Device Letters.

[41]  Herbert Kroemer,et al.  On the (110) orientation as the preferred orientation for the molecular beam epitaxial growth of GaAs on Ge, GaP on Si, and similar zincblende‐on‐diamond systems , 1980 .

[42]  H. Morkoc,et al.  Characteristics of GaAs/AlGaAs MODFETs grown directly on , 1984, 1984 International Electron Devices Meeting.

[43]  H. Z. Chen,et al.  High‐speed GaAs p‐i‐n photodiodes grown on Si substrates by molecular beam epitaxy , 1988 .

[44]  H. Morkoc,et al.  Properties of MODFET's grown on Si substrates at DC and microwave frequencies , 1986, IEEE Transactions on Electron Devices.

[45]  Joseph M. Ballantyne,et al.  GaAs light‐emitting diodes fabricated on Ge‐coated Si substrates , 1984 .

[46]  M. Akiyama,et al.  Growth of Single Domain GaAs on 2-inch Si(100) Substrate by Molecular Beam Epitaxy , 1985 .

[47]  S. Zemon,et al.  Photoluminescence and photoluminescence excitation spectra of GaAs grown directly on Si , 1986 .

[48]  H. Morkoc,et al.  Microwave properties of self-aligned GaAs/AlGaAs heterojunction bipolar transistors on silicon substrates , 1986, IEEE Electron Device Letters.

[49]  T. H. Windhorn,et al.  AlGaAs double‐heterostructure diode lasers fabricated on a monolithic GaAs/Si substrate , 1984 .

[50]  A. Taddiken,et al.  Performance of digital GaAs E/D MESFET circuits fabricated in GaAs-on-Si substrate , 1986, 1986 International Electron Devices Meeting.

[51]  M. I. Aksun,et al.  Performance of quarter‐micron GaAs metal‐semiconductor field‐effect transistors on Si substrates , 1986 .

[52]  H. Morkoç,et al.  Investigation of GaAs/(Al,Ga)As multiple quantum wells grown on Ge and Si substrates by molecular‐beam epitaxy , 1987 .

[53]  Molecular beam epitaxy of GaAs and AlGaAs on Si , 1984 .

[54]  R. C. Henderson Silicon Cleaning with Hydrogen Peroxide Solutions: A High Energy Electron Diffraction and Auger Electron Spectroscopy Study , 1972 .

[55]  H. Z. Chen,et al.  High-frequency modulation of AlGaAs/GaAs lasers grown on Si substrate by molecular beam epitaxy , 1988 .

[56]  H. Morkoç,et al.  AlGaAs/GaAs multiple quantum well reflection modulators grown on Si substrates , 1988 .

[57]  Characteristics of p‐GaAs/n‐Si heterojunctions grown by molecular‐beam epitaxy , 1987 .

[58]  A. A. Studna,et al.  Chemical etching and cleaning procedures for Si, Ge, and some III‐V compound semiconductors , 1981 .

[59]  G. Munns,et al.  Dislocation Reduction Via Annealing Of GaAs Grown On Si Substrates , 1987, Other Conferences.

[60]  M. Umeno,et al.  Epitaxial growth and material properties of GaAs on Si grown by MOCVD , 1986 .

[61]  Hadis Morkoç,et al.  Dislocation reduction in epitaxial GaAs on Si(100) , 1986 .

[62]  H. Morkoç,et al.  Interface charge polarity of a polar on nonpolar semiconductor GaAs/Si with Ga and As prelayers , 1986 .

[63]  Miles V. Klein,et al.  Effect of in situ and ex situ annealing on dislocations in GaAs on Si substrates , 1987 .

[64]  P. Pukite,et al.  Multilayer step formation after As adsorption on Si (100): Nucleation of GaAs on vicinal Si , 1987 .

[65]  M. Yamaguchi,et al.  14.5% conversion efficiency GaAs solar cell fabricated on Si substrates , 1986 .

[66]  Y. Hamakawa,et al.  3d-Transition Metal Related Photoluminescence in In1-xGaxP Alloys , 1987 .

[67]  Miles V. Klein,et al.  Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy , 1985 .

[68]  T. Ueda,et al.  Growth of GaAs on Si and its Application to FETs and LEDs , 1986 .

[69]  Hadis Morkoç,et al.  Material properties of high‐quality GaAs epitaxial layers grown on Si substrates , 1986 .

[70]  B. Tsaur,et al.  GaAs Shallow-homojunction solar cells on Ge-coated Si substrates , 1981, IEEE Electron Device Letters.

[71]  Hadis Morkoç,et al.  Monolithic integration of GaAs/AlGaAs modulation‐doped field‐effect transistors and N‐metal‐oxide‐semiconductor silicon circuits , 1985 .

[72]  Roger J. Malik,et al.  Optically pumped laser oscillation in the 1.6–1.8 μm region from Al0.4Ga0.6Sb/GaSb/Al0.4Ga0.6Sb double heterostructures grown by molecular beam heteroepitaxy on Si , 1986 .

[73]  Masahiro Akiyama,et al.  Fabrication of GaAs MESFET Ring Oscillator on MOCVD Grown GaAs/Si(100) Substrate , 1984 .

[74]  G. Hashiguchi,et al.  Si(001)-2×1 Single-Domain Structure Obtained by High Temperature Annealing , 1986 .

[75]  K. Morizane Antiphase domain structures in GaP and GaAs epitaxial layers grown on Si and Ge , 1977 .

[76]  R. Fischer,et al.  Structural properties of GaAs on (001) oriented Si and Ge substrates , 1987 .

[77]  Tetsuo Soga,et al.  Room-temperature laser operation of AlGaAs/GaAs double heterostructures fabricated on Si substrates by metalorganic chemical vapor deposition , 1986 .

[78]  Herbert Kroemer,et al.  Polar-on-nonpolar epitaxy , 1987 .

[79]  A. Christou,et al.  Surface treatment of (11̄02) sapphire and (100) silicon for molecular beam epitaxial growth , 1984 .