Cohort Profile: The DynaHEALTH consortium – a European consortium for a life-course bio-psychosocial model of healthy ageing of glucose homeostasis

Sylvain Sebert, Estelle Lowry , Nicole Aumüller, Mercedes G Bermúdez, Lise G Bjerregaard, Susanne R de Rooij, Maneka De Silva, Hanan El Marroun, Nadine Hummel, Teija Juola, Giacomo Mason, Daniela Much, Elena Oliveros, Stavros Poupakis, Nina Rautio, Phillipp Schwarzfischer, Evangelia Tzala, Olaf Uhl, Cornelieke van de Beek, Florianne Vehmeijer, Juan Verdejo-Román, Niko Wasenius, Claire Webster, Leena Ala-Mursula, Karl-Heinz Herzig, Sirkka Keinänen-Kiukaanniemi, Jouko Miettunen, Jennifer L Baker, Cristina Campoy, Gabriella Conti, Johan G Eriksson, Sandra Hummel, Vincent Jaddoe, Berthold Koletzko, Alex Lewin, Maria Rodriguez-Palermo, Tessa Roseboom, Ricardo Rueda, Jayne Evans, Janine F Felix, Inga Prokopenko, Thorkild IA Sørensen and Marjo-Riitta Järvelin*

[1]  С.О. Грищенко 2014 , 2019, The Winning Cars of the Indianapolis 500.

[2]  A. Lewin,et al.  Understanding the complexity of glycaemic health: systematic bio-psychosocial modelling of fasting glucose in middle-age adults; a DynaHEALTH study , 2018, International Journal of Obesity.

[3]  T. Sørensen,et al.  Change in Overweight from Childhood to Early Adulthood and Risk of Type 2 Diabetes , 2018, The New England journal of medicine.

[4]  J. Eriksson,et al.  Work-loss years among people diagnosed with diabetes: a reappraisal from a life course perspective , 2018, Acta Diabetologica.

[5]  A. Geelen,et al.  Women, their Offspring and iMproving lifestyle for Better cardiovascular health of both (WOMB project): a protocol of the follow-up of a multicentre randomised controlled trial , 2018, BMJ Open.

[6]  O. Franco,et al.  The Rotterdam Study: 2018 update on objectives, design and main results , 2017, European Journal of Epidemiology.

[7]  M. Hernán,et al.  Nature as a Trialist?: Deconstructing the Analogy Between Mendelian Randomization and Randomized Trials. , 2017, Epidemiology.

[8]  M. Järvelin,et al.  Accumulated exposure to unemployment is related to impaired glucose metabolism in middle-aged men: A follow-up of the Northern Finland Birth Cohort 1966. , 2017, Primary care diabetes.

[9]  M. Jarvelin,et al.  Association of pre-pregnancy body mass index with offspring metabolic profile: Analyses of 3 European prospective birth cohorts , 2017, PLoS medicine.

[10]  ClarLynda R. Williams-DeVane,et al.  Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium , 2017, bioRxiv.

[11]  D. Lawlor,et al.  Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study , 2017, PLoS medicine.

[12]  O. Franco,et al.  The Generation R Study: design and cohort update 2017 , 2016, European journal of epidemiology.

[13]  Kyle J. Gaulton,et al.  Genome-wide associations for birth weight and correlations with adult disease , 2016 .

[14]  D. Lawlor,et al.  Metabolic signatures of birthweight in 18 288 adolescents and adults , 2016, International journal of epidemiology.

[15]  V. Jaddoe,et al.  Associations of genetic risk scores based on adult adiposity pathways with childhood growth and adiposity measures , 2016, BMC Genetics.

[16]  J. Lorente,et al.  Maternal, fetal and perinatal alterations associated with obesity, overweight and gestational diabetes: an observational cohort study (PREOBE) , 2016, BMC Public Health.

[17]  Alex Broadbent,et al.  Causality and causal inference in epidemiology: the need for a pluralistic approach , 2016, International journal of epidemiology.

[18]  S. Sebert,et al.  Maternal Body Weight and Gestational Diabetes Differentially Influence Placental and Pregnancy Outcomes , 2015, The Journal of clinical endocrinology and metabolism.

[19]  John D Potter,et al.  Toward Rigorous Data Harmonization in Cancer Epidemiology Research: One Approach. , 2015, American journal of epidemiology.

[20]  T. Sørensen,et al.  Cohort Profile Cohort Profile : The Danish Conscription Database ( DCD ) : A cohort of 728 160 men born from 1939 through 1959 , 2015 .

[21]  T. Sørensen,et al.  Effects of body size and change in body size from infancy through childhood on body mass index in adulthood , 2014, International Journal of Obesity.

[22]  J. Eriksson,et al.  Prevention of gestational diabetes through lifestyle intervention: study design and methods of a Finnish randomized controlled multicenter trial (RADIEL) , 2014, BMC Pregnancy and Childbirth.

[23]  U. Sovio,et al.  How do changes in body mass index in infancy and childhood associate with cardiometabolic profile in adulthood? Findings from the Northern Finland Birth Cohort 1966 Study , 2014, International Journal of Obesity.

[24]  T. Roseboom,et al.  The developmental origins of ageing: study protocol for the Dutch famine birth cohort study on ageing , 2013, BMJ Open.

[25]  A. Beyerlein,et al.  Postpartum outcomes in women with gestational diabetes and their offspring: POGO study design and first-year results. , 2013, The review of diabetic studies : RDS.

[26]  T. Sørensen,et al.  Weight and weight gain during early infancy predict childhood obesity: a case-cohort study , 2012, International Journal of Obesity.

[27]  M. Ezzati,et al.  National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants , 2011, The Lancet.

[28]  A. Hofman,et al.  The Generation R Study: design and cohort update 2010 , 2010, European Journal of Epidemiology.

[29]  A. Ziegler,et al.  Prevalence and Predictors of Overweight and Insulin Resistance in Offspring of Mothers With Gestational Diabetes Mellitus , 2010, Diabetes Care.

[30]  Philippe Froguel,et al.  Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight , 2010, Nature Genetics.

[31]  T. Sørensen,et al.  Cohort profile: the Copenhagen School Health Records Register. , 2009, International journal of epidemiology.

[32]  B. Koletzko,et al.  Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. , 2009, The American journal of clinical nutrition.

[33]  J. Eriksson,et al.  Infant Growth and Stroke in Adult Life: The Helsinki Birth Cohort Study , 2007, Stroke.

[34]  S. Keinänen-Kiukaanniemi,et al.  Association of low‐insulin sensitivity measured by quantitative insulin sensitivity check index with hair loss in 55‐year‐old men. A Finnish population‐based study , 2006, Diabetes, obesity & metabolism.

[35]  S. Keinänen-Kiukaanniemi,et al.  Non-insulin-dependent diabetes mellitus and depression in a middle-aged Finnish population , 1997, Social Psychiatry and Psychiatric Epidemiology.

[36]  P. Rantakallio,et al.  Labour induction policy in hospitals of different levels of specialisation , 1993, British journal of obstetrics and gynaecology.

[37]  P. Rantakallio,et al.  The longitudinal study of the northern Finland birth cohort of 1966. , 1988, Paediatric and perinatal epidemiology.