The topological Hausdorff dimension and transport properties of Sierpiński carpets

Abstract In this Letter, the analytical expression of topological Hausdorff dimension D t H is derived for some kinds of infinitely ramified Sierpinski carpets. Furthermore, we deduce that the Hausdorff dimension of the union of all self-avoiding paths admitted on the infinitely ramified Sierpinski carpet has the Hausdorff dimension D H s a = D t H . We also put forward a phenomenological relation for the fractal dimension of the random walk on the infinitely ramified Sierpinski carpet. The effects of fractal attributes on the transport properties are highlighted. Possible applications of the developed tools are briefly outlined.

[1]  Curtis T. McMullen,et al.  The Hausdorff dimension of general Sierpiński carpets , 1984, Nagoya Mathematical Journal.

[2]  H. Stanley,et al.  Possible connection between the optimal path and flow in percolation clusters. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Y. Jin,et al.  Kinematical measurement of hydraulic tortuosity of fluid flow in porous media , 2015 .

[4]  F. A. Reis,et al.  The ideal chain problem in infinitely ramified self-similar structures , 1994 .

[5]  G. Venanzoni,et al.  Dual-Band Substrate Integrated Waveguide Resonator Based on Sierpinski Carpet , 2015 .

[6]  M. Sahimi,et al.  Use of microseismicity for determining the structure of the fracture network of large-scale porous media , 2013 .

[7]  M. Sahimi,et al.  Tortuosity in Porous Media: A Critical Review , 2013 .

[8]  Lifeng Xi,et al.  DIMENSIONS OF INTERSECTIONS OF THE SIERPINSKI CARPET WITH LINES OF RATIONAL SLOPES , 2007, Proceedings of the Edinburgh Mathematical Society.

[9]  M. Bonk Uniformization of Sierpiński carpets in the plane , 2010, 1009.4094.

[10]  Boming Yu,et al.  NUMERICAL SIMULATION OF TORTUOSITY FOR FLUID FLOW IN TWO-DIMENSIONAL PORE FRACTAL MODELS OF POROUS MEDIA , 2014 .

[11]  M. Shapiro,et al.  CANTOR-TYPE SETS IN HYPERBOLIC NUMBERS , 2016 .

[12]  Finite-size scaling for random walks on fractals , 1995 .

[13]  H. Roman,et al.  Self-avoiding walks on self-similar structures: finite versus infinite ramification , 2002 .

[14]  H. Saomoto,et al.  Direct comparison of hydraulic tortuosity and electric tortuosity based on finite element analysis , 2015 .

[15]  R. Hilfer,et al.  Renormalisation on Sierpinski-type fractals , 1984 .

[16]  N. Odling,et al.  Scaling of fracture systems in geological media , 2001 .

[17]  V. Voller,et al.  Infiltration experiments demonstrate an explicit connection between heterogeneity and anomalous diffusion behavior , 2016 .

[18]  Yonezawa,et al.  Anomalous relaxation in fractal structures. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Estibalitz Durand Cartagena,et al.  Rectificable curves in sierpinski carpets , 2011 .

[20]  Muhammad Sahimi,et al.  Flow and Transport in Porous Media and Fractured Rock - Toc , 2016 .

[21]  A. Khabbazi,et al.  Analytical tortuosity-porosity correlations for Sierpinski carpet fractal geometries , 2015 .

[22]  In-mook Kim,et al.  Lower and upper bounds for the anomalous diffusion exponent on Sierpinski carpets , 1993 .

[23]  Yu Bo-Ming,et al.  A Geometry Model for Tortuosity of Flow Path in Porous Media , 2004 .

[24]  Y-h. Taguchi Lacunarity and universality , 1987 .

[25]  Xiangyun Hu,et al.  An electrical conductivity model for fractal porous media , 2015 .

[26]  Baoguo Jia Maximum density for the Sierpinski carpet , 2009, Comput. Math. Appl..

[27]  Bertran Steinsky,et al.  Connected generalised Sierpiński carpets , 2010 .

[28]  A. Balankin,et al.  Hydrodynamics of fractal continuum flow. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Allen G. Hunt,et al.  Percolation Theory for Flow in Porous Media , 2005 .

[30]  Xiangyun Hu,et al.  Generalized modeling of spontaneous imbibition based on Hagen-Poiseuille flow in tortuous capillaries with variably shaped apertures. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[31]  F. A. Reis Diffusion on regular random fractals , 1996 .

[32]  A. Balankin,et al.  Map of fluid flow in fractal porous medium into fractal continuum flow. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Bin Lin Classification and universal properties of Sierpinski carpets , 1987 .

[34]  Jiangfeng Guo,et al.  Lattice Boltzmann simulation of endothermal catalytic reaction in catalyst porous media , 2013 .

[35]  J C Vassilicos,et al.  Transport properties of saturated and unsaturated porous fractal materials. , 2008, Physical review letters.

[37]  An Exploration Of The Generalized Cantor Set , 2013 .

[38]  Jianchao Cai,et al.  A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media , 2011 .

[39]  Generalized Mandelbrot rule for fractal sections. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[40]  Gabor Korvin,et al.  Fractal radar scattering from soil. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Alexander S. Balankin,et al.  A continuum framework for mechanics of fractal materials I: from fractional space to continuum with fractal metric , 2015 .

[42]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[43]  A. Roberts,et al.  Generalization of the fractal Einstein law relating conduction and diffusion on networks. , 2009, Physical review letters.

[44]  András Telcs,et al.  The art of random walks , 2006 .

[45]  F. D. A. Aarao Reis Scaling relations in the diffusive infiltration in fractals , 2016 .

[46]  M. Rams,et al.  Dimension of slices of Sierpiński-like carpets , 2014 .

[47]  M. Werner,et al.  Self-organized stiffness in regular fractal polymer structures. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  R. Dasgupta,et al.  Scaling exponents for random walks on Sierpinski carpets and number of distinct sites visited: a new algorithm for infinite fractal lattices , 1999 .

[49]  J. Gouyet Physics and Fractal Structures , 1996 .

[50]  P. Hsiao,et al.  Percolation transition in fractal dimensions , 2004 .

[51]  L. Cristea,et al.  On totally disconnected generalised Sierpinski carpets , 2013, 1303.4883.

[52]  Umberto Mosco INVARIANT FIELD METRICS AND DYNAMICAL SCALINGS ON FRACTALS , 1997 .

[53]  B. Das,et al.  Measurement and Modeling of Diffusive Tortuosity in Saturated Soils: A Pedotransfer Function Approach , 2014 .

[54]  A. Balankin,et al.  Phosphate Alumina Process by Sol−Gel: Textural and Fractal Properties , 2003 .

[55]  Quasisymmetric rigidity of Sierpiński carpets $\boldsymbol{F}_{\boldsymbol{n},\boldsymbol{p}}$ , 2013, Ergodic Theory and Dynamical Systems.

[56]  SCALING FOR RANDOM WALKS ON SIERPINSKI CARPETS , 1996 .

[57]  Giorgio Pia,et al.  An intermingled fractal units model and method to predict permeability in porous rock , 2014 .

[58]  Klaus Regenauer-Lieb,et al.  Application of percolation theory to microtomography of structured media: percolation threshold, critical exponents, and upscaling. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Zhi-Xiong Wen,et al.  Lipschitz equivalence of a class of general Sierpinski carpets , 2012 .

[60]  Jianchao Cai,et al.  a Numerical Study on Fractal Dimensions of Current Streamlines in Two-Dimensional and Three-Dimensional Pore Fractal Models of Porous Media , 2015 .

[61]  M. Antonellini,et al.  From fractures to flow: A field-based quantitative analysis of an outcropping carbonate reservoir , 2010 .

[62]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[63]  A. Balankin,et al.  Effective degrees of freedom of a random walk on a fractal. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  L. Cristea A geometric property of the Sierpiński carpet , 2005 .

[65]  Masuo Suzuki,et al.  Phase Transition and Fractals , 1983 .

[66]  Lacunarity and universality , 1988 .

[67]  S. Havlin,et al.  Diffusion in disordered media , 2002 .

[68]  B. Mandelbrot,et al.  Phase transitions on fractals. III. Infinitely ramified lattices , 1984 .

[69]  Rich'ard Balka,et al.  A new fractal dimension: The topological Hausdorff dimension , 2011, 1108.4292.

[70]  Alexander S. Balankin,et al.  Steady laminar flow of fractal fluids , 2017 .

[71]  A. Manning,et al.  Dimension of slices through the Sierpinski carpet , 2012 .

[72]  Alexander S. Balankin,et al.  Anomalous diffusion of fluid momentum and Darcy-like law for laminar flow in media with fractal porosity , 2016 .

[73]  Boming Yu,et al.  Tortuosity of Flow Paths through a Sierpinski Carpet , 2011 .

[74]  Karl Heinz Hoffmann,et al.  The pore structure of Sierpinski carpets , 2001 .

[75]  M. Sahimi,et al.  Percolation Theory Generates a Physically Based Description of Tortuosity in Saturated and Unsaturated Porous Media , 2013 .

[76]  R. Bass,et al.  Resistance and spectral dimension of Sierpinski carpets , 1990 .

[77]  Topological Conformal Dimension , 2014, 1406.6623.

[78]  Claudio Pollo,et al.  Analysis of fractal electrodes for efficient neural stimulation , 2013, Front. Neuroeng..

[79]  Franklin Mendivil,et al.  On the Hausdorff h-measure of cantor sets , 2004 .

[80]  Jianchao Cai,et al.  Fractal Characterization of Spontaneous Co-current Imbibition in Porous Media , 2010 .

[81]  DISTRIBUTION OF DISTANCES AND INTERIOR DISTANCES FOR CERTAIN SELF-SIMILAR MEASURES , 2004 .