Device-independent quantum key distribution from generalized CHSH inequalities

Device-independent quantum key distribution aims at providing security guarantees even when using largely uncharacterised devices. In the simplest scenario, these guarantees are derived from the CHSH score, which is a simple linear combination of four correlation functions. We here derive a security proof from a generalisation of the CHSH score, which effectively takes into account the individual values of two correlation functions. We show that this additional information, which is anyway available in practice, allows one to get higher key rates than with the CHSH score. We discuss the potential advantage of this technique for realistic photonic implementations of device-independent quantum key distribution.

[1]  Shihan Sajeed,et al.  Attacking quantum key distribution by light injection via ventilation openings , 2020, PloS one.

[2]  Thomas Vidick,et al.  Practical device-independent quantum cryptography via entropy accumulation , 2018, Nature Communications.

[3]  Stefano Pironio,et al.  Randomness versus nonlocality and entanglement. , 2011, Physical review letters.

[4]  Yang Liu,et al.  Device-independent quantum random-number generation , 2018, Nature.

[5]  M. Fejer,et al.  Experimental measurement-device-independent quantum key distribution. , 2012, Physical review letters.

[6]  Xiongfeng Ma,et al.  Improved data post-processing in quantum key distribution and application to loss thresholds in device independent QKD , 2011, Quantum Inf. Comput..

[7]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[8]  Ivan vSupi'c,et al.  Self-testing of quantum systems: a review , 2019, Quantum.

[9]  L. Mirsky A trace inequality of John von Neumann , 1975 .

[10]  A. Zeilinger,et al.  Bell violation using entangled photons without the fair-sampling assumption , 2012, Nature.

[11]  B Kraus,et al.  Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. , 2004, Physical review letters.

[12]  I Lucio-Martinez,et al.  Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. , 2013, Physical review letters.

[13]  Pavel Sekatski,et al.  What is the minimum CHSH score certifying that a state resembles the singlet? , 2020, Quantum.

[14]  H. Weinfurter,et al.  Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors , 2011, 1101.5289.

[15]  R. Renner,et al.  Information-theoretic security proof for quantum-key-distribution protocols , 2005, quant-ph/0502064.

[16]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[17]  R. Penty,et al.  Quantum key distribution without detector vulnerabilities using optically seeded lasers , 2015, Nature Photonics.

[18]  Li Qian,et al.  Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. , 2013, Physical review letters.

[19]  Graeme Smith,et al.  Noisy processing and distillation of private quantum States. , 2007, Physical review letters.

[20]  P. Sekatski,et al.  Noisy Preprocessing Facilitates a Photonic Realization of Device-Independent Quantum Key Distribution. , 2020, Physical review letters.

[21]  T. F. D. Silva,et al.  Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits , 2012, 1207.6345.

[22]  Le Phuc Thinh,et al.  Randomness Extraction from Bell Violation with Continuous Parametric Down-Conversion. , 2018, Physical review letters.

[23]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[24]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[25]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Eberhard,et al.  Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[27]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[28]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[29]  R. Renner,et al.  Improved DIQKD protocols with finite-size analysis , 2020, Quantum.

[30]  Valerio Scarani,et al.  Robust Device-Independent Quantum Key Distribution , 2020 .

[31]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[32]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[33]  A. Acín,et al.  Device-independent quantum key distribution based on asymmetric CHSH inequalities , 2020, 2007.16146.

[34]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[35]  V. Scarani,et al.  Device-independent quantum key distribution secure against collective attacks , 2009, 0903.4460.

[36]  Erik Woodhead,et al.  Device-independent quantum key distribution with asymmetric CHSH inequalities , 2021, Quantum.

[37]  C. Jordan Essai sur la géométrie à $n$ dimensions , 1875 .

[38]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.