The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen

Saccharomyces cerevisiae, a well-established model for species as diverse as humans and pathogenic fungi, is more recently a model for population and quantitative genetics. S. cerevisiae is found in multiple environments-one of which is the human body-as an opportunistic pathogen. To aid in the understanding of the S. cerevisiae population and quantitative genetics, as well as its emergence as an opportunistic pathogen, we sequenced, de novo assembled, and extensively manually edited and annotated the genomes of 93 S. cerevisiae strains from multiple geographic and environmental origins, including many clinical origin strains. These 93 S. cerevisiae strains, the genomes of which are near-reference quality, together with seven previously sequenced strains, constitute a novel genetic resource, the "100-genomes" strains. Our sequencing coverage, high-quality assemblies, and annotation provide unprecedented opportunities for detailed interrogation of complex genomic loci, examples of which we demonstrate. We found most phenotypic variation to be quantitative and identified population, genotype, and phenotype associations. Importantly, we identified clinical origin associations. For example, we found that an introgressed PDR5 was present exclusively in clinical origin mosaic group strains; that the mosaic group was significantly enriched for clinical origin strains; and that clinical origin strains were much more copper resistant, suggesting that copper resistance contributes to fitness in the human host. The 100-genomes strains are a novel, multipurpose resource to advance the study of S. cerevisiae population genetics, quantitative genetics, and the emergence of an opportunistic pathogen.

[1]  J. Mccusker,et al.  Nature and distribution of large sequence polymorphisms in Saccharomyces cerevisiae. , 2011, FEMS yeast research.

[2]  L. Muller,et al.  A multispecies-based taxonomic microarray reveals interspecies hybridization and introgression in Saccharomyces cerevisiae. , 2009, FEMS yeast research.

[3]  Justin C. Fay,et al.  Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds , 2007, Proceedings of the National Academy of Sciences.

[4]  L. Steinmetz,et al.  Antagonistic Changes in Sensitivity to Antifungal Drugs by Mutations of an Important ABC Transporter Gene in a Fungal Pathogen , 2010, PloS one.

[5]  Himanshu Sinha,et al.  Complex Genetic Interactions in a Quantitative Trait Locus , 2006, PLoS genetics.

[6]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[7]  S. Elrod,et al.  Optimizing sporulation conditions for different Saccharomyces cerevisiae strain backgrounds. , 2009, Methods in molecular biology.

[8]  Rhys A. Farrer,et al.  Transmission of Hypervirulence Traits via Sexual Reproduction within and between Lineages of the Human Fungal Pathogen Cryptococcus gattii , 2013, PLoS genetics.

[9]  M. Pfaller,et al.  In vitro susceptibility testing and DNA typing of Saccharomyces cerevisiae clinical isolates , 1996, Journal of clinical microbiology.

[10]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[11]  F. Dietrich,et al.  Oxidative Stress Survival in a Clinical Saccharomyces cerevisiae Isolate Is Influenced by a Major Quantitative Trait Nucleotide , 2011, Genetics.

[12]  Edith D. Wong,et al.  Saccharomyces Genome Database: the genomics resource of budding yeast , 2011, Nucleic Acids Res..

[13]  H. Helenius,et al.  Fungal colonization of haematological patients receiving cytotoxic chemotherapy: emergence of azole-resistant Saccharomyces cerevisiae. , 2000, The Journal of hospital infection.

[14]  Leonid Kruglyak,et al.  Identification and Dissection of a Complex DNA Repair Sensitivity Phenotype in Baker's Yeast , 2008, PLoS genetics.

[15]  A. Long,et al.  The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. , 1999, Genome research.

[16]  F. Dietrich,et al.  The Reacquisition of Biotin Prototrophy in Saccharomyces cerevisiae Involved Horizontal Gene Transfer, Gene Duplication and Gene Clustering , 2007, Genetics.

[17]  J. Lucas,et al.  Genome‐wide association analysis of clinical vs. nonclinical origin provides insights into Saccharomyces cerevisiae pathogenesis , 2011, Molecular ecology.

[18]  J. Heitman,et al.  Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. , 2013, Cell host & microbe.

[19]  Fran Lewitter,et al.  Intragenic tandem repeats generate functional variability , 2005, Nature Genetics.

[20]  A. Rodríguez-Navarro,et al.  A novel P‐type ATPase from yeast involved in sodium transport , 1991, FEBS letters.

[21]  P. Sniegowski,et al.  Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. , 2002, FEMS yeast research.

[22]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[23]  Robin D Dowell,et al.  Genotype to Phenotype: A Complex Problem , 2010, Science.

[24]  D. Botstein,et al.  The cost of gene expression underlies a fitness trade-off in yeast , 2009, Proceedings of the National Academy of Sciences.

[25]  Leonid Kruglyak,et al.  Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae , 2009, Nature.

[26]  G. Fink,et al.  Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. , 1996, Genetics.

[27]  D. Thiele,et al.  Copper in microbial pathogenesis: meddling with the metal. , 2012, Cell host & microbe.

[28]  G. Liti,et al.  Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity , 2012, Molecular ecology.

[29]  Leonid Kruglyak,et al.  Local Regulatory Variation in Saccharomyces cerevisiae , 2005, PLoS genetics.

[30]  C. Herbert,et al.  A ‘natural’ mutation in Saccharomyces cerevisiae strains derived from S288c affects the complex regulatory gene HAP1 (CYP1) , 1999, Current Genetics.

[31]  Leopold Parts,et al.  A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes , 2014, Molecular biology and evolution.

[32]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[33]  R. W. Davis,et al.  Application of DNA typing methods and genetic analysis to epidemiology and taxonomy of Saccharomyces isolates , 1997, Journal of clinical microbiology.

[34]  M. Zupancic,et al.  Nicotinic Acid Limitation Regulates Silencing of Candida Adhesins During UTI , 2005, Science.

[35]  D. Hamer,et al.  Function and autoregulation of yeast copperthionein. , 1985, Science.

[36]  L. David,et al.  Four Linked Genes Participate in Controlling Sporulation Efficiency in Budding Yeast , 2006, PLoS genetics.

[37]  Gabor T. Marth,et al.  Haplotype-based variant detection from short-read sequencing , 2012, 1207.3907.

[38]  Kevin C. Chen,et al.  Local Ancestry Corrects for Population Structure in Saccharomyces cerevisiae Genome-Wide Association Studies , 2012, Genetics.

[39]  Leopold Parts,et al.  Assessing the complex architecture of polygenic traits in diverged yeast populations , 2011, Molecular ecology.

[40]  N. Skovgaard New trends in emerging pathogens. , 2007, International journal of food microbiology.

[41]  Huanming Yang,et al.  De novo assembly of human genomes with massively parallel short read sequencing. , 2010, Genome research.

[42]  J. Welch,et al.  The molecular genetics of copper resistance in Saccharomyces cerevisiae — a paradigm for non‐conventional yeasts , 1988, Journal of basic microbiology.

[43]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[44]  Samuel A. Lee,et al.  Emerging opportunistic yeast infections. , 2011, The Lancet. Infectious diseases.

[45]  Noah A. Rosenberg,et al.  CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure , 2007, Bioinform..

[46]  K. Helliwell,et al.  Widespread decay of vitamin-related pathways: coincidence or consequence? , 2013, Trends in genetics : TIG.

[47]  Himanshu Sinha,et al.  Sequential Elimination of Major-Effect Contributors Identifies Additional Quantitative Trait Loci Conditioning High-Temperature Growth in Yeast , 2008, Genetics.

[48]  S. Levine,et al.  Admixture and recombination among Toxoplasma gondii lineages explain global genome diversity , 2012, Proceedings of the National Academy of Sciences.

[49]  H. Steiner,et al.  The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane. , 1995, The EMBO journal.

[50]  M. Latreille,et al.  APMR2 tandem repeat with a modified C-terminus is located downstream from theKRS1 gene encoding lysyl-tRNA synthetase inSaccharomyces cerevisiae , 1991, Molecular and General Genetics MGG.

[51]  H. Fan,et al.  Mutations in the RNA polymerase II transcription machinery suppress the hyperrecombination mutant hpr1 delta of Saccharomyces cerevisiae. , 1996, Genetics.

[52]  M. Polsinelli,et al.  On the origins of wine yeast. , 1999, Research in microbiology.

[53]  K. T. Nishant,et al.  The Baker's Yeast Diploid Genome Is Remarkably Stable in Vegetative Growth and Meiosis , 2010, PLoS genetics.

[54]  Ronald W. Davis,et al.  Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. , 1994, Genetics.

[55]  Paul M. Magwene,et al.  Revisiting Mortimer's Genome Renewal Hypothesis: heterozygosity, homothallism, and the potential for adaptation in yeast. , 2014, Advances in experimental medicine and biology.

[56]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[57]  Isolation and characterization of Saccharomyces cerevisiae mutants resistant to sulphite. , 1989, Yeast.

[58]  D. Stevens,et al.  Molecular epidemiology of Saccharomyces cerevisiae in an immunocompromised host unit. , 2010, Diagnostic microbiology and infectious disease.

[59]  Russell E. Lewis,et al.  Rare opportunistic (non-Candida, non-Cryptococcus) yeast bloodstream infections in patients with cancer. , 2012, The Journal of infection.

[60]  M. Pfaller,et al.  Epidemiology of Invasive Mycoses in North America , 2010, Critical reviews in microbiology.

[61]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[62]  Daniel R. Richards,et al.  Direct allelic variation scanning of the yeast genome. , 1998, Science.

[63]  Pooja K. Strope,et al.  Structures of Naturally Evolved CUP1 Tandem Arrays in Yeast Indicate That These Arrays Are Generated by Unequal Nonhomologous Recombination , 2014, G3: Genes, Genomes, Genetics.

[64]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[65]  A. Rodloff,et al.  Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-Year Analysis of Susceptibilities of Candida Species to Fluconazole and Voriconazole as Determined by CLSI Standardized Disk Diffusion , 2010, Journal of Clinical Microbiology.

[66]  K. Kavanagh,et al.  Emergence of Saccharomyces cerevisiae as a human pathogen: Implications for biotechnology , 1999 .

[67]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[68]  Justin C. Fay,et al.  Genomic Sequence Diversity and Population Structure of Saccharomyces cerevisiae Assessed by RAD-seq , 2013, G3: Genes, Genomes, Genetics.

[69]  L. Kruglyak,et al.  Natural Polymorphism in BUL2 Links Cellular Amino Acid Availability with Chronological Aging and Telomere Maintenance in Yeast , 2011, PLoS genetics.

[70]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[71]  M. Aigle,et al.  RTM1: a member of a new family of telomeric repeated genes in yeast. , 1995, Genetics.

[72]  Peilin Jia,et al.  Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789 , 2007, Proceedings of the National Academy of Sciences.

[73]  G. Naumov Genetic differentiation and ecology of the yeast saccharomyces paradoxus batschinskaia , 1986 .

[74]  William Stafford Noble,et al.  Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast , 2013, Genome research.

[75]  D. Thiele,et al.  A widespread transposable element masks expression of a yeast copper transport gene. , 1996, Genes & development.

[76]  L. J. Douglas,et al.  Candida biofilms and their role in infection. , 2003, Trends in microbiology.

[77]  Anders Blomberg,et al.  Trait Variation in Yeast Is Defined by Population History , 2011, PLoS genetics.

[78]  B. Dujon,et al.  Microsatellite Typing as a New Tool for Identification of Saccharomyces cerevisiae Strains , 2001, Journal of Clinical Microbiology.

[79]  Daniel J. Kvitek,et al.  Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments , 2012, Genome research.

[80]  J. Thorner,et al.  Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae , 1992, Nature.

[81]  S. Hara,et al.  Cloning and nucleotide sequence of the KHS killer gene of Saccharomyces cerevisiae. , 1990, Agricultural and biological chemistry.

[82]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[83]  E. Louis,et al.  Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. , 2000, International journal of systematic and evolutionary microbiology.

[84]  Paul M. Magwene,et al.  Natural Variation in CDC28 Underlies Morphological Phenotypes in an Environmental Yeast Isolate , 2011, Genetics.

[85]  J. Akey,et al.  On the Prospects of Whole-Genome Association Mapping in Saccharomyces cerevisiae , 2012, Genetics.

[86]  A. Esberg,et al.  Genomic Structure of and Genome-Wide Recombination in the Saccharomyces cerevisiae S288C Progenitor Isolate EM93 , 2011, PloS one.

[87]  Paul M. Magwene,et al.  Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae , 2011, Proceedings of the National Academy of Sciences.

[88]  R. W. Davis,et al.  Comparative pathogenesis of clinical and nonclinical isolates of Saccharomyces cerevisiae. , 1994, The Journal of infectious diseases.

[89]  M. Petris,et al.  Copper Homeostasis at the Host-Pathogen Interface* , 2012, The Journal of Biological Chemistry.

[90]  Brenna M Henn,et al.  Fine-scale population structure and the era of next-generation sequencing. , 2010, Human molecular genetics.

[91]  Himanshu Sinha,et al.  The tRNA-Tyr gene family of Saccharomyces cerevisiae: agents of phenotypic variation and position effects on mutation frequency. , 2002, Genetics.

[92]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[93]  O. Neyrolles,et al.  Zinc and copper toxicity in host defense against pathogens: Mycobacterium tuberculosis as a model example of an emerging paradigm , 2013, Front. Cell. Infect. Microbiol..

[94]  Edith D. Wong,et al.  The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now , 2013, G3: Genes, Genomes, Genetics.

[95]  J. Welch,et al.  Tandem gene amplification mediates copper resistance in yeast. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Amparo Querol,et al.  Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. , 2002, Genome research.

[97]  Christophe Hennequin,et al.  Invasive Saccharomyces infection: a comprehensive review. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[98]  M. Stephens,et al.  Genome-wide Efficient Mixed Model Analysis for Association Studies , 2012, Nature Genetics.

[99]  A. Wong,et al.  Incompatibilities Involving Yeast Mismatch Repair Genes: A Role for Genetic Modifiers and Implications for Disease Penetrance and Variation in Genomic Mutation Rates , 2008, PLoS genetics.

[100]  A. Adams,et al.  Methods in yeast genetics : a Cold Spring Harbor Laboratory course manual , 1998 .

[101]  Enrique Herrero,et al.  Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6 , 2002, Yeast.

[102]  D. K. Sandhu,et al.  Conditional virulence of a p-aminobenzoic acid-requiring mutant of Aspergillus fumigatus , 1976, Infection and immunity.

[103]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[104]  F. Foury,et al.  A Single Nucleotide Polymorphism in the DNA Polymerase Gamma Gene of Saccharomyces cerevisiae Laboratory Strains Is Responsible for Increased Mitochondrial DNA Mutability , 2007, Genetics.

[105]  L. Kruglyak,et al.  Variants in SUP45 and TRM10 Underlie Natural Variation in Translation Termination Efficiency in Saccharomyces cerevisiae , 2011, PLoS genetics.

[106]  M. Diaz,et al.  Invasive fungal infections in Chile: a multicenter study of fungal prevalence and susceptibility during a 1-year period. , 2004, Medical mycology.

[107]  J. Meis,et al.  Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2005: an 8.5-Year Analysis of Susceptibilities of Candida Species and Other Yeast Species to Fluconazole and Voriconazole Determined by CLSI Standardized Disk Diffusion Testing , 2007, Journal of Clinical Microbiology.

[108]  E. Nahon,et al.  Identification of the heterothallic mutation in HO-endonuclease of S. cerevisiae using HO/ho chimeric genes , 1995, Current Genetics.

[109]  E. Naumova,et al.  A genetically isolated population of Saccharomyces cerevisiae in Malaysia , 2006, Microbiology.

[110]  Chuong B. Do,et al.  Access the most recent version at doi: 10.1101/gr.926603 References , 2003 .

[111]  J R Johnston,et al.  Genealogy of principal strains of the yeast genetic stock center. , 1986, Genetics.

[112]  A. Wiest,et al.  The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research , 2010, Journal of Biosciences.

[113]  Robert P. Davey,et al.  Population genomics of domestic and wild yeasts , 2008, Nature.

[114]  D. Hartl,et al.  Cascading transcriptional effects of a naturally occurring frameshift mutation in Saccharomyces cerevisiae , 2008, Molecular ecology.

[115]  E. Naumova,et al.  Genetic identification of new biological species Saccharomyces arboricolus Wang et Bai , 2010, Antonie van Leeuwenhoek.

[116]  J. Lopez-Ribot,et al.  Our Current Understanding of Fungal Biofilms , 2009, Critical reviews in microbiology.

[117]  E. Kandeler,et al.  Remediation of copper in vineyards--a mini review. , 2012, Environmental pollution.

[118]  B. Cohen,et al.  Genetic Interactions Between Transcription Factors Cause Natural Variation in Yeast , 2009, Science.

[119]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[120]  Gadi Borkow,et al.  Copper as a biocidal tool. , 2005, Current medicinal chemistry.

[121]  G. Suzzi,et al.  Sulfur dioxide and wine microorganisms , 1993 .

[122]  Justin C. Fay,et al.  Incipient Balancing Selection through Adaptive Loss of Aquaporins in Natural Saccharomyces cerevisiae Populations , 2010, PLoS genetics.

[123]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[124]  P. Barré,et al.  Distribution of the flocculation protein, Flop, at the cell surface during yeast growth: The availability of Flop determines the flocculation level , 1998, Yeast.

[125]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[126]  Ronald W. Davis,et al.  Quantitative trait loci mapped to single-nucleotide resolution in yeast , 2005, Nature Genetics.

[127]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[128]  I. Holb Fungal Disease Management in Environmentally Friendly Apple Production – A Review , 2009 .

[129]  L. Muller,et al.  Microsatellite analysis of genetic diversity among clinical and nonclinical Saccharomyces cerevisiae isolates suggests heterozygote advantage in clinical environments , 2009, Molecular ecology.

[130]  Fabiana M. Duarte,et al.  Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. , 2009, Genome research.

[131]  M. Goto,et al.  Functional analysis of HO gene in delayed homothallism in Saccharomyces cerevisiae wy2 , 1999, Yeast.

[132]  Rachel B. Brem,et al.  Polymorphisms in Multiple Genes Contribute to the Spontaneous Mitochondrial Genome Instability of Saccharomyces cerevisiae S288C Strains , 2009, Genetics.

[133]  D. Sherman,et al.  QTL Dissection of Lag Phase in Wine Fermentation Reveals a New Translocation Responsible for Saccharomyces cerevisiae Adaptation to Sulfite , 2014, PloS one.

[134]  J. Miller,et al.  Predicting the Functional Effect of Amino Acid Substitutions and Indels , 2012, PloS one.

[135]  J. Pronk,et al.  An atypical PMR2 locus is responsible for hypersensitivity to sodium and lithium cations in the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D. , 2009, FEMS yeast research.

[136]  Mike Tyers,et al.  High-resolution genetic mapping with ordered arrays of Saccharomyces cerevisiae deletion mutants. , 2002, Genetics.

[137]  Yasuhiro Suzuki,et al.  Sexual recombination and clonal evolution of virulence in Toxoplasma. , 2003, Microbes and infection.

[138]  Patricia Muñoz,et al.  Saccharomyces cerevisiae fungemia: an emerging infectious disease. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[139]  G. Fink,et al.  Bakers' yeast, a model for fungal biofilm formation. , 2001, Science.

[140]  Robert C. Edgar,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[141]  N. Russell,et al.  Nosocomial transmission of Saccharomyces cerevisiae in bone marrow transplant patients. , 2002, The Journal of hospital infection.

[142]  Justin C. Fay,et al.  A Catalog of Neutral and Deleterious Polymorphism in Yeast , 2008, PLoS genetics.

[143]  T. Stearns,et al.  Methods in yeast genetics , 2013 .

[144]  Justin C. Fay,et al.  ZRT1 Harbors an Excess of Nonsynonymous Polymorphism and Shows Evidence of Balancing Selection in Saccharomyces cerevisiae , 2012, G3: Genes, Genomes, Genetics.