Photonics and Lasers: An Introduction

Preface. PART I: PROPAGATION OF LIGHT. 1. Overview. 1-1 Photonics Defined. 1-2 Fiber Optic Communications. 1-3 Overview of Topics. 2. Review of Optics. 2-1 The Nature of Light. 2-2 Light at a Boundary. 2-3 Light Passing through. 2-4 Imaging Optics. 3. Planar Waveguides. 3-1 Waveguide Modes. 3-2 Mode Chart. 3-3 Dispersion. 4. Cylindrical Waveguides. 4-1 Acceptance Angle and Numerical Aperture. 4-2 Cylindrical Waveguide. 5. Losses in Optical Fibers. 5-1 Absorption Loss. 5-2 Scattering. 5-3 Bending Losses. 6. Dispersion in Optical Fibers. 6-1 Graded Index Fiber. 6-2 Intramodal Dispersion. 7. Fiber Connections and Diagnostics. 7-1 Fiber Connections. 7-2 Losses in Fiber Connections. 7-3 Fiber Loss Diagnostics. 8. Photonic Crystal Optics. 8-1 1-D Photonic Crystals. 8-2 2-D Photonic Crystals. 8-3 3-D Photonic Crystals. 9. Nonlinear Optics. 9-1 Fundamental Mechanisms. 9-2 Frequency Conversion. 9-3 Nonlinear Refractive Index. 9-4 Electro-optic Effects. PART II: GENERATION AND DETECTTION OF LIGHT. 10. Review of Semiconductor Physics. 10-1 Uniform Semiconductors. 10-2 Layered Semiconductors. 11. Light Sources. 11-1 The LED. 11-2 The Laser Diode. 12. Light Source to Waveguide Coupling Efficiency. 12-1 Point Source. 12-2 Lambertian Source. 12-3 Laser Source. 13. Optical Detectors. 13-1 Thermal Detectors. 13-2 Photon Detectors. 13-3 Noise in Photon Detectors. Part 2 Generation and Detection of Light. 14. Photodiode Detectors . 14-1 Biasing the Photodiode. 14-2 Output Saturation. 14-3 Response Time. 14-4 Types of Photodiodes. 14-5 Signal-to-Noise Ratio. 14-6 Detector Circuits. PART 3: LASER LIGHT. 15. Lasers and Coherent Light. 15-1 Overview of Laser. 15-2 Optical Coherence. 16. Optical Resonators. 16-1 Mode Frequencies. 16-2 Mode Width. 16-3 Fabry-Perot Interferometer. 17. Gaussian Beam Optics. 17-1 Gaussian Beams in Free. 17-2 Gaussian Beams in a Laser. 17-3 Gaussian Beams Passing. 18. Stimulated Emission and Optical Gain. 18-1 Transition Rates. 18-2 Optical Gain. 19. Optical Amplifiers. 19-1 Gain Coefficient. 19-2 Total Gain of Amplifier. 20. Laser Oscillation. 20-1 Threshold Condition. 20-2 Above Lasing Threshold. 21. CW Laser Characteristics. 21-1 Mode Spectrum of Laser. 21-2 Controlling the Laser. 22. Pulsed Lasers. 22-1 Uncontrolled Pulsing. 22-2 Pulsed Pump. 22-3 Theory of Q-Switching. 22-4 Methods of Q-Switching. 22-5 Theory of Mode Locking. 22-6 Methods of Mode Locking. 23 Survey of Laser Types. PART 4: LIGHT-BASED COMMUNICATIONS. 23-1 Optically Pumped Lasers. 23-2 Electrically Pumped Lasers. 24 Optical Communications. 24-1 Fiber Optic CommunicationsSystems. 24-2 Signal Multiplexing. 24-3 Power Budget in Fiber Optic. 24-4 Optical Amplifiers. 24-5 Free-Space Optics. Bibliography. Appendix A: Solid Angle and the Brightness Theorem. Appendix B: Fourier Synthesis and the Uncertainty Relation. List of Symbols. Index.

[1]  Jacob Riis Folkenberg,et al.  Modal cutoff and the V parameter in photonic crystal fibers. , 2003, Optics letters.

[2]  P. Roberts,et al.  Visualizing the photonic band gap in hollow core photonic crystal fibers. , 2005, Optics express.

[3]  Dietrich Marcuse,et al.  Chapter 3 – Guiding Properties of Fibers , 1979 .

[4]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[5]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[6]  H. Nakagome,et al.  Double eccentric connectors for optical fibers. , 1977, Applied optics.

[7]  D. Mccumber,et al.  Einstein Relations Connecting Broadband Emission and Absorption Spectra , 1964 .

[8]  Younan Xia,et al.  Self‐Assembly Approaches to Three‐Dimensional Photonic Crystals , 2001 .

[9]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[10]  R. Kashyap Fiber Bragg Gratings , 1999 .

[11]  Hermann A. Haus,et al.  Raman response function of silica-core fibers , 1989, Annual Meeting Optical Society of America.

[12]  Jay R. Simpson,et al.  Output saturation characteristics of erbium-doped fiber amplifiers pumped at 975 nm , 1990 .

[13]  Bradley K. Smith,et al.  A three-dimensional photonic crystal operating at infrared wavelengths , 1998, Nature.

[14]  John D. Joannopoulos,et al.  Existence of a photonic band gap in two dimensions , 1992 .

[15]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[16]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[17]  Jean-Michel Lourtioz,et al.  Submicrometer resolution Yablonovite templates fabricated by x-ray lithography , 2000 .

[18]  Tadashi Ito,et al.  A new method of developing ultralow-loss glasses , 1997 .

[19]  Ivan P. Kaminow,et al.  An introduction to electrooptic devices , 1974 .

[20]  Jeff Hecht,et al.  Understanding Fiber Optics , 1987 .

[21]  L. Jeunhomme Single-Mode Fiber Optics , 1989 .

[22]  J. Pate Introduction to Optics , 1937, Nature.

[23]  J. Vukusic Optical Fiber Communications: Principles and Practice , 1986 .

[24]  Richard L. Sutherland,et al.  Handbook of Nonlinear Optics , 1996 .

[25]  J. Judkins,et al.  Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter , 1997, IEEE Photonics Technology Letters.