MorphIO: Entirely Soft Sensing and Actuation Modules for Programming Shape Changes through Tangible Interaction

We introduce MorphIO, entirely soft sensing and actuation modules for programming by demonstration of soft robots and shape-changing interfaces.MorphIO's hardware consists of a soft pneumatic actuator containing a conductive sponge sensor.This allows both input and output of three-dimensional deformation of a soft material.Leveraging this capability, MorphIO enables a user to record and later playback physical motion of programmable shape-changing materials.In addition, the modular design of MorphIO's unit allows the user to construct various shapes and topologies through magnetic connection.We demonstrate several application scenarios, including tangible character animation, locomotion experiment of a soft robot, and prototyping tools for animated soft objects.Our user study with six participants confirms the benefits of MorphIO, as compared to the existing programming paradigm.

[1]  R. Wood,et al.  A non-differential elastomer curvature sensor for softer-than-skin electronics , 2011 .

[2]  Jan Gulliksen,et al.  User-centered System Design , 2011 .

[3]  Hiroshi Ishii,et al.  Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices , 2012, UIST.

[4]  Sanlin S. Robinson,et al.  Poroelastic Foams for Simple Fabrication of Complex Soft Robots , 2015, Advanced materials.

[5]  Jun Kato,et al.  Reactile: Programming Swarm User Interfaces through Direct Physical Manipulation , 2018, CHI.

[6]  Alanson P. Sample,et al.  Force Jacket: Pneumatically-Actuated Jacket for Embodied Haptic Experiences , 2018, CHI.

[7]  Yasuaki Kakehi,et al.  COLORISE: Shape- and Color-Changing Pixels with Inflatable Elastomers and Interactions , 2018, Tangible and Embedded Interaction.

[8]  F. Thomas,et al.  The illusion of life : Disney animation , 1981 .

[9]  Hiroshi Ishii,et al.  curlybot: designing a new class of computational toys , 2000, CHI.

[10]  Radhika Nagpal,et al.  Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation , 2014, Bioinspiration & biomimetics.

[11]  Xu Sun,et al.  Sticky Actuator: Free-Form Planar Actuators for Animated Objects , 2015, TEI.

[12]  Henry Lieberman,et al.  Watch what I do: programming by demonstration , 1993 .

[13]  Yoshihiro Kawahara,et al.  xSlate: A Stiffness-Controlled Surface for Shape-Changing Interfaces , 2018, CHI Extended Abstracts.

[14]  Yuta Sugiura,et al.  PINOKY: a ring that animates your plush toys , 2011, SA '11.

[15]  Jonathan Rossiter,et al.  EuMoBot: replicating euglenoid movement in a soft robot , 2018, Journal of the Royal Society Interface.

[16]  Hiroshi Ishii,et al.  jamSheets: thin interfaces with tunable stiffness enabled by layer jamming , 2014, TEI '14.

[17]  Hiroshi Ishii,et al.  PneUI: pneumatically actuated soft composite materials for shape changing interfaces , 2013, UIST.

[18]  Hiroshi Ishii,et al.  TEI 2016 Studio: Inflated Curiosity , 2016, TEI.

[19]  Hiroshi Ishii,et al.  Bosu: a physical programmable design tool for transformability with soft mechanics , 2010, Conference on Designing Interactive Systems.

[20]  Gierad Laput,et al.  SqueezaPulse: Adding Interactive Input to Fabricated Objects Using Corrugated Tubes and Air Pulses , 2017, TEI.

[21]  Hiroshi Ishii,et al.  Printflatables: Printing Human-Scale, Functional and Dynamic Inflatable Objects , 2017, CHI.

[22]  Conor J. Walsh,et al.  A biologically inspired soft exosuit for walking assistance , 2015, Int. J. Robotics Res..

[23]  Wei Yao,et al.  Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation , 2016, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[24]  Da-Yuan Huang,et al.  PuPoP: Pop-up Prop on Palm for Virtual Reality , 2018, UIST.

[25]  Kevin O'Brien,et al.  Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides , 2016, Science Robotics.

[26]  Ariel Shamir,et al.  Mirror Puppeteering: Animating Toy Robots in Front of a Webcam , 2015, TEI.

[27]  Sanlin S. Robinson,et al.  Highly stretchable electroluminescent skin for optical signaling and tactile sensing , 2016, Science.

[28]  Selma Sabanovic,et al.  Happy Moves, Sad Grooves: Using Theories of Biological Motion and Affect to Design Shape-Changing Interfaces , 2016, Conference on Designing Interactive Systems.

[29]  Cagdas D. Onal,et al.  A composite soft bending actuation module with integrated curvature sensing , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[30]  Hiroshi Ishii,et al.  Topobo: a constructive assembly system with kinetic memory , 2004, CHI.

[31]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[32]  Yong-Lae Park,et al.  A soft multi-axis force sensor , 2012, 2012 IEEE Sensors.

[33]  Andrew Wong,et al.  Soft Pneumatic Bending Actuator with Integrated Carbon Nanotube Displacement Sensor , 2016, Robotics.

[34]  Yasuaki Kakehi,et al.  FoamSense: Design of Three Dimensional Soft Sensors with Porous Materials , 2017, UIST.

[35]  Rebecca K. Kramer,et al.  Masked Deposition of Gallium‐Indium Alloys for Liquid‐Embedded Elastomer Conductors , 2013 .

[36]  Hiroshi Ishii,et al.  aeroMorph - Heat-sealing Inflatable Shape-change Materials for Interaction Design , 2016, UIST.

[37]  Marek P. Michalowski,et al.  Keepon , 2009, Int. J. Soc. Robotics.

[38]  Huichan Zhao,et al.  Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense , 2015 .

[39]  P. Ekman An argument for basic emotions , 1992 .