Superresolution far-field imaging of complex objects using reduced superoscillating ripples

Superoscillation is a phenomenon where a wave oscillates locally faster than its highest Fourier component. While previous reports have shown attractive possibilities for a superoscillation-based far-field superresolution imaging device, it has also been recognized that a high-energy “sideband” region coexists with the superresolution features. This sideband causes strong restrictions and necessitates trade-offs in achievable resolution, viewing area, and sensitivity of the imaging device. In this work, we introduce a new class of superoscillation waveform—which consists of a diffraction-limited hotspot surrounded by low-energy superoscillating sidelobe ripples. This waveform alleviates the aforementioned trade-off and enables superresolution imaging for complex objects over a larger viewing area while maintaining a practical level of sensitivity. Using this waveform as the point spread function of an imaging system, we demonstrate the successful superresolution of Latin letters without performing scanning and/or post-processing operations.

[1]  Zubin Jacob,et al.  Optical hyperlens: far-field imaging beyond the diffraction limit , 2006, SPIE NanoScience + Engineering.

[2]  Nikolay I. Zheludev,et al.  Focusing of Light by a Nano-Hole Array , 2006 .

[3]  George V. Eleftheriades,et al.  An Optical Super-Microscope for Far-field, Real-time Imaging Beyond the Diffraction Limit , 2013, Scientific Reports.

[4]  E. G. van Putten,et al.  Spatial amplitude and phase modulation using commercial twisted nematic LCDs. , 2007, Applied optics.

[5]  Nikolay I. Zheludev,et al.  Super-oscillatory optical needle , 2013 .

[6]  S. Schelkunoff A mathematical theory of linear arrays , 1943 .

[7]  J. Goodman Introduction to Fourier optics , 1969 .

[8]  Mark R. Dennis,et al.  A super-oscillatory lens optical microscope for subwavelength imaging. , 2012, Nature materials.

[9]  R. Sec. XV. On the theory of optical images, with special reference to the microscope , 2009 .

[10]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[11]  R. Marchiano,et al.  Transverse shift of helical beams and subdiffraction imaging. , 2010, Physical review letters.

[12]  Philip S. Considine,et al.  Effects of Coherence on Imaging Systems , 1966 .

[13]  G. Toraldo di Francia,et al.  Super-gain antennas and optical resolving power , 1952 .

[14]  Michael V Berry,et al.  Exact nonparaxial transmission of subwavelength detail using superoscillations , 2013 .

[15]  Michael V Berry,et al.  Suppression of superoscillations by noise , 2017 .

[16]  George V. Eleftheriades,et al.  Superoscillations without Sidebands: Power-Efficient Sub-Diffraction Imaging with Propagating Waves , 2015, Scientific Reports.

[17]  Nikolay I. Zheludev,et al.  Far field subwavelength focusing using optical eigenmodes , 2011 .

[18]  Nikolay I. Zheludev,et al.  Point spread function of the optical needle super-oscillatory lens , 2014 .

[19]  G. Eleftheriades,et al.  Superdirectivity-based superoscillatory waveform design: A practical path to far-field sub-diffraction imaging , 2014, European Conference on Antennas and Propagation.

[20]  Jani Tervo,et al.  Limitations of superoscillation filters in microscopy applications. , 2012, Optics letters.

[21]  Vaidman,et al.  Superpositions of time evolutions of a quantum system and a quantum time-translation machine. , 1990, Physical review letters.

[22]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[23]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[24]  Guanghui Yuan,et al.  Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution. , 2014, Optics express.

[25]  Nikolay I. Zheludev,et al.  Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths , 2014, Scientific Reports.

[26]  George V. Eleftheriades,et al.  Broadband superoscillation brings a wave into perfect three-dimensional focus , 2017 .

[27]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[28]  Jinghua Teng,et al.  Optimization‐free superoscillatory lens using phase and amplitude masks , 2014 .

[29]  George V Eleftheriades,et al.  2D and 3D sub-diffraction source imaging with a superoscillatory filter. , 2013, Optics express.

[30]  Yonina C. Eldar,et al.  Sparsity-based single-shot sub-wavelength coherent diffractive imaging , 2011, 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel.

[31]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[32]  P.J.S.G. Ferreira,et al.  Superoscillations: Faster Than the Nyquist Rate , 2006, IEEE Transactions on Signal Processing.

[33]  Changtao Wang,et al.  Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing , 2015 .

[34]  George V Eleftheriades,et al.  Adaptation of Schelkunoff's Superdirective Antenna Theory for the Realization of Superoscillatory Antenna Arrays , 2010, IEEE Antennas and Wireless Propagation Letters.

[35]  Nikolay Zheludev,et al.  Focusing of light by a nanohole array , 2007 .

[36]  K. Dholakia,et al.  Enhanced two-point resolution using optical eigenmode optimized pupil functions , 2011 .

[37]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[38]  G. Eleftheriades,et al.  Sub-Wavelength Focusing at the Multi-Wavelength Range Using Superoscillations: An Experimental Demonstration , 2011, IEEE Transactions on Antennas and Propagation.

[39]  D. Psaltis,et al.  Superoscillatory diffraction-free beams , 2011 .

[40]  G. V. Eleftheriades,et al.  Temporal Pulse Compression Beyond the Fourier Transform Limit , 2011, IEEE Transactions on Microwave Theory and Techniques.

[41]  Dae Gwan Lee,et al.  Direct Construction of Superoscillations , 2014, IEEE Transactions on Signal Processing.

[42]  Nikolay I Zheludev,et al.  Super-resolution without evanescent waves. , 2008, Nano letters.

[43]  Sandu Popescu,et al.  Evolution of quantum superoscillations, and optical superresolution without evanescent waves , 2006 .

[44]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[45]  E. Synge XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region , 1928 .

[46]  Michael Beny,et al.  Faster than Fourier , 2017 .

[47]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[48]  Lord Rayleigh,et al.  On the Theory of Optical Images, with Special Reference to the Microscope , 1903 .

[49]  Yan Wang,et al.  Spatially shifted beam approach to subwavelength focusing. , 2008, Physical review letters.

[50]  K. Fujita [Two-photon laser scanning fluorescence microscopy]. , 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[51]  Mark R. Dennis,et al.  Superoscillation in speckle patterns. , 2008, Optics letters.