Bicompact schemes for solving a steady-state transport equation by the quasi-diffusion method

[1]  E. Aristova Bicompact schemes for an inhomogeneous linear transport equation in the case of a large optical depth , 2014 .

[2]  E. Aristova Bicompact schemes for an inhomogeneous linear transport equation in the case of a large optical depth , 2014, Mathematical Models and Computer Simulations.

[3]  D. F. Baydin,et al.  Bicompact schemes for an inhomogeneous linear transport equation , 2013 .

[4]  B. Rogov,et al.  Boundary conditions implementation in bicompact schemes for the linear transport equation , 2013 .

[5]  S. Utyuzhnikov,et al.  High-order accurate monotone compact running scheme for multidimensional hyperbolic equations , 2013 .

[6]  B. Rogov,et al.  Monotone high-accuracy compact running scheme for quasi-linear hyperbolic equations , 2012 .

[7]  B. Rogov,et al.  Bicompact monotonic schemes for a multidimensional linear transport equation , 2012 .

[8]  B. Rogov,et al.  Monotone compact running schemes for systems of hyperbolic equations , 2012 .

[9]  B. Rogov,et al.  Monotonic bicompact schemes for linear transport equations , 2012 .

[10]  B. Rogov,et al.  Fourth-order accurate bicompact schemes for hyperbolic equations , 2010 .

[11]  Edward W. Larsen,et al.  Fast iterative methods for discrete-ordinates particle transport calculations , 2002 .

[12]  T. Elizarova,et al.  Kinetically coordinated difference schemes for modelling flows of a viscous heat-conducting gas , 1990 .

[13]  William H. Reed,et al.  New Difference Schemes for the Neutron Transport Equation , 1971 .

[14]  V.Ya. Gol'din,et al.  A quasi-diffusion method of solving the kinetic equation , 1964 .