A New Formulation of Linear Discriminant Analysis for Robust Dimensionality Reduction

Dimensionality reduction is a critical technology in the domain of pattern recognition, and linear discriminant analysis (LDA) is one of the most popular supervised dimensionality reduction methods. However, whenever its distance criterion of objective function uses <inline-formula><tex-math notation="LaTeX">$L_2$</tex-math><alternatives><inline-graphic xlink:href="nie-ieq1-2842023.gif"/></alternatives></inline-formula>-norm, it is sensitive to outliers. In this paper, we propose a new formulation of linear discriminant analysis via joint <inline-formula><tex-math notation="LaTeX">$L_{2,1}$</tex-math><alternatives><inline-graphic xlink:href="nie-ieq2-2842023.gif"/></alternatives></inline-formula>-norm minimization on objective function to induce robustness, so as to efficiently alleviate the influence of outliers and improve the robustness of proposed method. An efficient iterative algorithm is proposed to solve the optimization problem and proved to be convergent. Extensive experiments are performed on an artificial data set, on UCI data sets, and on four face data sets, which sufficiently demonstrates the efficiency of comparing to other methods and robustness to outliers of our approach.

[1]  Feiping Nie,et al.  Neighborhood MinMax Projections , 2007, IJCAI.

[2]  Jiashu Zhang,et al.  Linear Discriminant Analysis Based on L1-Norm Maximization , 2013, IEEE Transactions on Image Processing.

[3]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[4]  Feiping Nie,et al.  Trace Ratio Problem Revisited , 2009, IEEE Transactions on Neural Networks.

[5]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[6]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[7]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Lei Wang,et al.  On Similarity Preserving Feature Selection , 2013, IEEE Transactions on Knowledge and Data Engineering.

[9]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[10]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[11]  Konstantinos N. Plataniotis,et al.  Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition , 2005, Pattern Recognit. Lett..

[12]  Paul Geladi,et al.  Principal Component Analysis , 1987, Comprehensive Chemometrics.

[13]  Hong Yan,et al.  Robust classification using ℓ2, 1-norm based regression model , 2012, Pattern Recognit..

[14]  Ja-Chen Lin,et al.  A new LDA-based face recognition system which can solve the small sample size problem , 1998, Pattern Recognit..

[15]  Jieping Ye,et al.  Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems , 2005, J. Mach. Learn. Res..

[16]  A. Martínez,et al.  The AR face databasae , 1998 .

[17]  Jiawei Han,et al.  Semi-supervised Discriminant Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[18]  Hong Qiao,et al.  Scatter Balance: An Angle-Based Supervised Dimensionality Reduction , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[19]  Chris H. Q. Ding,et al.  R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization , 2006, ICML.

[20]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Feiping Nie,et al.  Orthogonal least squares regression for feature extraction , 2016, Neurocomputing.

[22]  Robert P. W. Duin,et al.  Stabilizing classifiers for very small sample sizes , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[23]  T. Kanade,et al.  Robust subspace computation using L1 norm , 2003 .

[24]  Nojun Kwak,et al.  Principal Component Analysis Based on L1-Norm Maximization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[26]  C. R. Rao,et al.  The Utilization of Multiple Measurements in Problems of Biological Classification , 1948 .

[27]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Feiping Nie,et al.  Efficient and Robust Feature Selection via Joint ℓ2, 1-Norms Minimization , 2010, NIPS.

[29]  Feiping Nie,et al.  Robust Principal Component Analysis with Non-Greedy l1-Norm Maximization , 2011, IJCAI.

[30]  Tao Jiang,et al.  Efficient and robust feature extraction by maximum margin criterion , 2003, IEEE Transactions on Neural Networks.

[31]  Jian Yang,et al.  Median LDA: A Robust Feature Extraction Method for Face Recognition , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[32]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[33]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[34]  Hyunsoo Kim,et al.  Dimension Reduction in Text Classification with Support Vector Machines , 2005, J. Mach. Learn. Res..

[35]  Aleix M. Martinez,et al.  The AR face database , 1998 .