Biological applications of high aspect ratio nanoparticles

This review describes recent advances in nanomaterials fabrication that have led to the synthesis of high aspect ratio particles on nanometer length scales. The elongated structure of these materials often result in inherent chemical, electrical, magnetic, and optical anisotropy that can be exploited for interactions with cells and biomolecules in fundamentally new ways. We briefly describe the synthetic procedures that have been developed to fabricate nanorods, nanowires, and nanotubes. We summarize literature reports that describe the use of high aspect ratio nanoparticles for biological sensing, separations, and gene delivery. We emphasize the recent discovery of single nanowire field-effect transistors that may revolutionize biological sensing and yield extremely low detection limits. Separations technology with chemically modifiable nanotube membranes and with magnetic nanowires that can be tailored to selectively interact with molecules of interest is also described. Other areas of biotechnology that have been improved by the integration of high aspect ratio nanoparticles are also described.

[1]  Gerald J. Meyer,et al.  Selective Noncovalent Adsorption of Protein to Bifunctional Metallic Nanowire Surfaces , 2003 .

[2]  U. Banin,et al.  Synthesis and Properties of CdSe/ZnS Core/Shell Nanorods , 2003 .

[3]  G. Meyer,et al.  Selective Functionalization of Two-Component Magnetic Nanowires , 2003 .

[4]  Sophie Demoustier-Champagne,et al.  Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors. , 2003, Biosensors & bioelectronics.

[5]  Mei Gao,et al.  Glucose sensors based on glucose-oxidase-containing polypyrrole/aligned carbon nanotube coaxial nanowire electrodes , 2003 .

[6]  Joseph Wang,et al.  Carbon nanotube/teflon composite electrochemical sensors and biosensors. , 2003, Analytical chemistry.

[7]  Catherine J. Murphy,et al.  An Improved Synthesis of High‐Aspect‐Ratio Gold Nanorods , 2003 .

[8]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[9]  C. R. Martin,et al.  Template‐Fabricated Gold Nanowires and Nanotubes , 2003 .

[10]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[11]  Yi Lin,et al.  Functionalized carbon nanotubes: properties and applications. , 2002, Accounts of chemical research.

[12]  Malcolm L. H. Green,et al.  Bioelectrochemical single-walled carbon nanotubes. , 2002, Journal of the American Chemical Society.

[13]  C. R. Martin,et al.  Smart nanotubes for bioseparations and biocatalysis. , 2002, Journal of the American Chemical Society.

[14]  Hans Söderlund,et al.  Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations , 2002, Science.

[15]  C. R. Martin,et al.  Ion channel mimetic micropore and nanotube membrane sensors. , 2002, Analytical chemistry.

[16]  R. Penner Mesoscopic Metal Particles and Wires by Electrodeposition , 2002 .

[17]  Gerald J. Meyer,et al.  Cell manipulation using magnetic nanowires , 2002 .

[18]  R. G. Freeman,et al.  Submicrometer metallic barcodes. , 2001, Science.

[19]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[20]  Weidong Yang,et al.  Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods , 2001, Science.

[21]  J. Pingarrón,et al.  Graphite-teflon composite bienzyme electrodes for the determination of cholesterol in reversed micelles. Application to food samples. , 2001, Analytical chemistry.

[22]  K. Jirage,et al.  Investigations of the Transport Properties of Gold Nanotubule Membranes , 2001 .

[23]  B. Martin,et al.  DNA‐Directed Assembly of Gold Nanowires on Complementary Surfaces , 2001 .

[24]  Younan Xia,et al.  A Solution-Phase Approach to the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10−30 nm , 2000 .

[25]  Mostafa A. El-Sayed,et al.  Self-Assembly of Gold Nanorods , 2000 .

[26]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[27]  G. Meng,et al.  Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties , 2000 .

[28]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[29]  Peter C. Searson,et al.  Fabrication of nanoporous single crystal mica templates for electrochemical deposition of nanowire arrays , 2000 .

[30]  Thomas E. Mallouk,et al.  Orthogonal Self‐Assembly on Colloidal Gold‐Platinum Nanorods , 1999 .

[31]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[32]  H. Richardson,et al.  In situ infrared reflection–absorption spectroscopic characterization of sustained kinetic oscillations in the Pt(100)/NO+CO system , 1998 .

[33]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[34]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[35]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[36]  T. Coyle,et al.  Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates , 1997 .

[37]  M. Pileni,et al.  Control of the shape of copper metallic particles by using a colloidal system as template , 1997 .

[38]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[39]  Matsuhiko Nishizawa,et al.  Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity , 1995, Science.

[40]  Charles R. Martin,et al.  FABRICATION AND EVALUATION OF NANOELECTRODE ENSEMBLES , 1995 .

[41]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[42]  C. Chien,et al.  Fabrication and Magnetic Properties of Arrays of Metallic Nanowires , 1993, Science.

[43]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[44]  G. Whitesides,et al.  Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces , 1991, Science.

[45]  G M Whitesides,et al.  Orthogonal Self-Assembled Monolayers: Alkanethiols on Gold and Alkane Carboxylic Acids on Alumina , 1989, Science.

[46]  Charles R. Martin,et al.  Preparation and electrochemical characterization of ultramicroelectrode ensembles , 1987 .

[47]  I. Haller Covalently attached organic monolayers on semiconductor surfaces , 1978 .

[48]  George E. Possin,et al.  A method for forming very small diameter wires (Notes) , 1970 .

[49]  G. Whitesides,et al.  Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold , 1989 .