Infinite-Dimensional Highly-Uniform Point Sets Defined via Linear Recurrences in F 2 w
暂无分享,去创建一个
[1] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[2] Harald Niederreiter,et al. Introduction to finite fields and their applications: List of Symbols , 1986 .
[3] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[4] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[5] W. J. Whiten,et al. Computational investigations of low-discrepancy sequences , 1997, TOMS.
[6] Art B. Owen,et al. Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.
[7] P. L’Ecuyer,et al. Variance Reduction via Lattice Rules , 1999 .
[8] Pierre L'Ecuyer,et al. Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .
[9] Pierre L'Ecuyer,et al. Random Number Generators Based on Linear Recurrences in F 2 w , 2003 .
[10] Art B. Owen,et al. Variance with alternative scramblings of digital nets , 2003, TOMC.
[11] Pierre L'Ecuyer,et al. Randomized Polynomial Lattice Rules for Multivariate Integration and Simulation , 2001, SIAM J. Sci. Comput..
[12] Francois Panneton. Construction d'ensembles de points basee sur des recurrences lineaires dans un corps fini de caracteristique 2 pour la simulation Monte Carlo et l'integration quasi-Monte Carlo , 2004 .
[13] Harald Niederreiter,et al. Constructions of (t, m, s)-nets and (t, s)-sequences , 2005, Finite Fields Their Appl..