HOLISMOKES

We present a systematic search for wide-separation (Einstein radius >1.5"), galaxy-scale strong lenses in the 30 000 sq.deg of the Pan-STARRS 3pi survey on the Northern sky. With long time delays of a few days to weeks, such systems are particularly well suited for catching strongly lensed supernovae with spatially-resolved multiple images and open new perspectives on early-phase supernova spectroscopy and cosmography. We produce a set of realistic simulations by painting lensed COSMOS sources on Pan-STARRS image cutouts of lens luminous red galaxies with known redshift and velocity dispersion from SDSS. First of all, we compute the photometry of mock lenses in gri bands and apply a simple catalog-level neural network to identify a sample of 1050207 galaxies with similar colors and magnitudes as the mocks. Secondly, we train a convolutional neural network (CNN) on Pan-STARRS gri image cutouts to classify this sample and obtain sets of 105760 and 12382 lens candidates with scores pCNN>0.5 and >0.9, respectively. Extensive tests show that CNN performances rely heavily on the design of lens simulations and choice of negative examples for training, but little on the network architecture. Finally, we visually inspect all galaxies with pCNN>0.9 to assemble a final set of 330 high-quality newly-discovered lens candidates while recovering 23 published systems. For a subset, SDSS spectroscopy on the lens central regions proves our method correctly identifies lens LRGs at z~0.1-0.7. Five spectra also show robust signatures of high-redshift background sources and Pan-STARRS imaging confirms one of them as a quadruply-imaged red source at z_s = 1.185 strongly lensed by a foreground LRG at z_d = 0.3155. In the future, we expect that the efficient and automated two-step classification method presented in this paper will be applicable to the deeper gri stacks from the LSST with minor adjustments.

[1]  M. Radovich,et al.  New High-quality Strong Lens Candidates with Deep Learning in the Kilo-Degree Survey , 2020, The Astrophysical Journal.

[2]  Zooniverse,et al.  Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI) , 2020, Astronomy & Astrophysics.

[3]  J. Frieman,et al.  STRIDES: Spectroscopic and photometric characterization of the environment and effects of mass along the line of sight to the gravitational lenses DES J0408–5354 and WGD 2038–4008 , 2020, Monthly Notices of the Royal Astronomical Society.

[4]  M. Huertas-Company,et al.  Detecting outliers in astronomical images with deep generative networks , 2020, Monthly Notices of the Royal Astronomical Society.

[5]  Sebastien Fabbro,et al.  Comparison of Multi-class and Binary Classification Machine Learning Models in Identifying Strong Gravitational Lenses , 2020, Publications of the Astronomical Society of the Pacific.

[6]  F. Courbin,et al.  HOLISMOKES , 2020, Astronomy & Astrophysics.

[7]  S. Suyu,et al.  Survey of Gravitationally lensed Objects in HSC Imaging (SuGOHI) – V. Group-to-cluster scale lens search from the HSC–SSP Survey , 2020, Monthly Notices of the Royal Astronomical Society.

[8]  P. Rosati,et al.  On the Accuracy of Time-delay Cosmography in the Frontier Fields Cluster MACS J1149.5+2223 with Supernova Refsdal , 2020, The Astrophysical Journal.

[9]  F. Courbin,et al.  TDCOSMO. I. An exploration of systematic uncertainties in the inference of $H_0$ from time-delay cosmography , 2019, 1912.08027.

[10]  C. Conselice,et al.  Identifying strong lenses with unsupervised machine learning using convolutional autoencoder , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  S. Suyu,et al.  Survey of Gravitationally lensed Objects in HSC Imaging (SuGOHI) , 2019, Astronomy & Astrophysics.

[12]  D. Gerdes,et al.  STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408−5354 , 2019, Monthly Notices of the Royal Astronomical Society.

[13]  E. Ofek,et al.  Magnification, dust and time-delay constraints from the first resolved strongly lensed Type Ia supernova iPTF16geu , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  R. Beaton,et al.  The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch , 2019, The Astrophysical Journal.

[15]  Stefan Hilbert,et al.  H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes , 2019, Monthly Notices of the Royal Astronomical Society.

[16]  A. Myers,et al.  Finding Strong Gravitational Lenses in the DESI DECam Legacy Survey , 2019, The Astrophysical Journal.

[17]  Yen-Ting Lin,et al.  Second data release of the Hyper Suprime-Cam Subaru Strategic Program , 2019, Publications of the Astronomical Society of Japan.

[18]  A. K. Qin,et al.  An Extended Catalog of Galaxy–Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks , 2019, The Astrophysical Journal Supplement Series.

[19]  Stephen Serjeant,et al.  Using convolutional neural networks to identify gravitational lenses in astronomical images , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  K. Lee,et al.  Survey of gravitationally-lensed objects in HSC imaging (SuGOHI) , 2019, Astronomy & Astrophysics.

[21]  A. Riess,et al.  Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM , 2019, The Astrophysical Journal.

[22]  J. Hjorth,et al.  Magnified or multiply imaged? – Search strategies for gravitationally lensed supernovae in wide-field surveys , 2019, Monthly Notices of the Royal Astronomical Society.

[23]  U. M. Noebauer,et al.  Strongly lensed SNe Ia in the era of LSST: observing cadence for lens discoveries and time-delay measurements , 2019, Astronomy & Astrophysics.

[24]  S. Suyu,et al.  Inner dark matter distribution of the Cosmic Horseshoe (J1148+1930) with gravitational lensing and dynamics , 2019, Astronomy & Astrophysics.

[25]  C. Heymans,et al.  LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[27]  A. K. Qin,et al.  Finding high-redshift strong lenses in DES using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.

[28]  M. Auger,et al.  Low-mass halo perturbations in strong gravitational lenses at redshift z ∼ 0.5 are consistent with CDM , 2018, Monthly Notices of the Royal Astronomical Society.

[29]  R. McMahon,et al.  Gravitationally lensed quasars inGaia– III. 22 new lensed quasars fromGaiadata release 2 , 2018, Monthly Notices of the Royal Astronomical Society.

[30]  Gregory M. Green,et al.  dustmaps: A Python interface for maps of interstellar dust , 2018, J. Open Source Softw..

[31]  F. Courbin,et al.  Impact of the 3D source geometry on time-delay measurements of lensed type-Ia supernovae , 2018, Astronomy & Astrophysics.

[32]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[33]  G. Hasinger,et al.  The DEIMOS 10K Spectroscopic Survey Catalog of the COSMOS Field , 2018, 1803.09251.

[34]  C. Fassnacht,et al.  A search for gravitationally lensed quasars and quasar pairs in Pan-STARRS1: spectroscopy and sources of shear in the diamond 2M1134−2103 , 2018, Monthly Notices of the Royal Astronomical Society.

[35]  M. Meneghetti,et al.  The strong gravitational lens finding challenge , 2018, Astronomy & Astrophysics.

[36]  M. Lombardi,et al.  Measuring the Value of the Hubble Constant “à la Refsdal” , 2018, The Astrophysical Journal.

[37]  Manda Banerji,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - XVI. Time delays for the quadruply imaged quasar DES J0408−5354 with high-cadence photometric monitoring , 2018 .

[38]  Ashley J. Ross,et al.  The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations at Redshift of 0.72 with the DR14 Luminous Red Galaxy Sample , 2017, The Astrophysical Journal.

[39]  P. Schechter,et al.  A Quadruply Lensed SN Ia: Gaining a Time-Delay...Losing a Standard Candle , 2017, 1711.07919.

[40]  J. Richard,et al.  The nature of giant clumps in distant galaxies probed by the anatomy of the cosmic snake , 2017, Nature Astronomy.

[41]  Daniel Thomas,et al.  The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations , 2017 .

[42]  T. Collett,et al.  Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images , 2017, 1708.00003.

[43]  Hiroyuki Ikeda,et al.  Deep Optical Imaging of the COSMOS Field with Hyper Suprime-Cam Using Data from the Subaru Strategic Program and the University of Hawaii , 2017, 1706.00566.

[44]  C. Rusu,et al.  Discovery of the First Quadruple Gravitationally Lensed Quasar Candidate with Pan-STARRS , 2017, 1705.08359.

[45]  J. Kneib,et al.  Deep convolutional neural networks as strong gravitational lens detectors , 2017, 1705.07132.

[46]  E. Le Floc'h,et al.  Planck's dusty GEMS. IV. Star formation and feedback in a maximum starburst at z = 3 seen at 60-pc resolution , 2017, 1704.05853.

[47]  Karl Glazebrook,et al.  Finding strong lenses in CFHTLS using convolutional neural networks , 2017, 1704.02744.

[48]  Nan Li,et al.  Automated Lensing Learner: Automated Strong Lensing Identification with a Computer Vision Technique , 2017, The Astrophysical Journal.

[49]  Research Center for the Early Universe,et al.  Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses , 2017, 1704.01585.

[50]  Y. Shu,et al.  SDSS J1640+1932: a spectacular galaxy–quasar strong lens system , 2017, 1703.07495.

[51]  B. Póczos,et al.  CMU DeepLens: deep learning for automatic image-based galaxy–galaxy strong lens finding , 2017, Monthly Notices of the Royal Astronomical Society.

[52]  M. Limousin,et al.  Planck’s dusty GEMS - III. A massive lensing galaxy with a bottom-heavy stellar initial mass function at z = 1.5 , 2017, 1703.02984.

[53]  N. R. Napolitano,et al.  Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks , 2017, 1702.07675.

[54]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[55]  R. J. Wainscoat,et al.  The Pan-STARRS1 Database and Data Products , 2016, The Astrophysical Journal Supplement Series.

[56]  P. A. Price,et al.  Pan-STARRS Pixel Analysis: Source Detection and Characterization , 2016, The Astrophysical Journal Supplement Series.

[57]  R. J. Wainscoat,et al.  Pan-STARRS Pixel Processing: Detrending, Warping, Stacking , 2016, The Astrophysical Journal Supplement Series.

[58]  P. Nugent,et al.  HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE , 2016, 1611.09459.

[59]  S. More,et al.  Interpreting the Strongly Lensed Supernova iPTF16geu: Time Delay Predictions, Microlensing, and Lensing Rates , 2016, 1611.04866.

[60]  Adam A. Miller,et al.  iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova , 2016, Science.

[61]  C. Lintott,et al.  Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging , 2016, 1610.03068.

[62]  C. Lintott,et al.  Galaxy Zoo: Quantitative visual morphological classifications for 48 000 galaxies from CANDELS , 2016, 1610.03070.

[63]  G. Meylan,et al.  H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.

[64]  G. Meylan,et al.  H0LiCOW – I. H0 Lenses in COSMOGRAIL's wellspring: program overview , 2016, 1607.00017.

[65]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[66]  S.Paltani,et al.  The VIMOS Ultra Deep Survey first data release: Spectra and spectroscopic redshifts of 698 objects up to zspec ~ 6 in CANDELS , 2016, 1602.01842.

[67]  John E. Carlstrom,et al.  DETECTION OF LENSING SUBSTRUCTURE USING ALMA OBSERVATIONS OF THE DUSTY GALAXY SDP.81 , 2016, 1601.01388.

[68]  R. Nichol,et al.  THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA , 2016, The Astrophysical Journal Supplement Series.

[69]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  N. Zacharias,et al.  IDENTIFICATION OF 1.4 MILLION ACTIVE GALACTIC NUCLEI IN THE MID-INFRARED USING WISE DATA , 2015, 1509.07289.

[71]  A. Myers,et al.  THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOUS RED GALAXY TARGET SELECTION , 2015, 1508.04478.

[72]  T. Collett THE POPULATION OF GALAXY–GALAXY STRONG LENSES IN FORTHCOMING OPTICAL IMAGING SURVEYS , 2015, 1507.02657.

[73]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[74]  C. Lintott,et al.  Space Warps II. New gravitational lens candidates from the CFHTLS discovered through citizen science , 2015, 1504.05587.

[75]  Edwin Simpson,et al.  Space Warps – I. Crowdsourcing the discovery of gravitational lenses , 2015, 1504.06148.

[76]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[77]  A. Fontana,et al.  Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens , 2014, Science.

[78]  Brandon C. Kelly,et al.  Data mining for gravitationally lensed quasars , 2014, 1410.4565.

[79]  Cosmology,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8 , 2014, 1410.1881.

[80]  S. J. Lilly,et al.  THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. III. SURVEY DESIGN, PERFORMANCE, AND SAMPLE CHARACTERISTICS , 2014, 1409.0447.

[81]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[82]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. XII. EXTENDING STRONG LENSING TO LOWER MASSES , 2014, 1407.2240.

[83]  M. Rossetti,et al.  The structure of Abell 1351: a bimodal galaxy cluster with peculiar diffuse radio emission , 2014, 1405.4707.

[84]  B. Garilli,et al.  The VIMOS Ultra-Deep Survey: ~10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z ≃ 6 , 2014, 1403.3938.

[85]  P. Marshall,et al.  RingFinder: AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN GROUND-BASED MULTI-FILTER IMAGING DATA , 2014, 1403.1041.

[86]  P. Norberg,et al.  Pan-STARRS1: Galaxy clustering in the Small Area Survey 2 , 2013, 1310.6366.

[87]  Sergey E. Koposov,et al.  Are group- and cluster-scale dark matter haloes overconcentrated? , 2013, 1308.6286.

[88]  C. Lintott,et al.  Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey , 2013, 1308.3496.

[89]  Cosmology,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. III. LENS MODELS, SURFACE PHOTOMETRY, AND STELLAR MASSES FOR THE FINAL SAMPLE , 2013, 1307.4764.

[90]  L. Koopmans,et al.  A low-mass cut-off near the hydrogen burning limit for Salpeter-like initial mass functions in early-type galaxies , 2013, 1306.2635.

[91]  M. Auger,et al.  The CASSOWARY spectroscopy survey: A new sample of gravitationally lensed galaxies in SDSS , 2013, 1302.2663.

[92]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[93]  M. Turatto,et al.  Supernovae and their host galaxies. I. The SDSS DR8 database and statistics , 2012, 1206.5016.

[94]  Edwin A. Valentijn,et al.  The Kilo-Degree Survey , 2012, Experimental Astronomy.

[95]  Michael C. Cooper,et al.  THE ADVANCED CAMERA FOR SURVEYS GENERAL CATALOG: STRUCTURAL PARAMETERS FOR APPROXIMATELY HALF A MILLION GALAXIES , 2012, 1203.1651.

[96]  J. P. McKean,et al.  Gravitational detection of a low-mass dark satellite galaxy at cosmological distance , 2012, Nature.

[97]  D. Thompson,et al.  DISENTANGLING BARYONS AND DARK MATTER IN THE SPIRAL GRAVITATIONAL LENS B1933+503 , 2011, 1110.2536.

[98]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[99]  U. Utah,et al.  Two-dimensional kinematics of SLACS lenses – III. Mass structure and dynamics of early-type lens galaxies beyond z ≃ 0.1 , 2011, 1102.2261.

[100]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[101]  Elena Pierpaoli,et al.  AN OPTICAL CATALOG OF GALAXY CLUSTERS OBTAINED FROM AN ADAPTIVE MATCHED FILTER FINDER APPLIED TO SLOAN DIGITAL SKY SURVEY DATA RELEASE 6 , 2010, 1011.0249.

[102]  Bonn,et al.  The properties of the interstellar medium within a star-forming galaxy at z= 2.3 , 2010, Monthly Notices of the Royal Astronomical Society.

[103]  S. Suyu,et al.  The halos of satellite galaxies: the companion of the massive elliptical lens SL2S J08544−0121 , 2010, 1007.4815.

[104]  C. Lintott,et al.  Galaxy Zoo 1: data release of morphological classifications for nearly 900 000 galaxies , 2010, 1007.3265.

[105]  T. Schrabback,et al.  J0454-0309: evidence of a strong lensing fossil group falling into a poor galaxy cluster , 2010, 1002.1080.

[106]  Ucsb,et al.  Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.

[107]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. IX. COLORS, LENSING, AND STELLAR MASSES OF EARLY-TYPE GALAXIES , 2009, 0911.2471.

[108]  A. Bolton,et al.  THE STRUCTURE AND DYNAMICS OF MASSIVE EARLY-TYPE GALAXIES: ON HOMOLOGY, ISOTHERMALITY, AND ISOTROPY INSIDE ONE EFFECTIVE RADIUS , 2009, 0906.1349.

[109]  M. Lombardi,et al.  Photometric mass and mass decomposition in early-type lens galaxies , 2009, 0904.3282.

[110]  A. Zacchei,et al.  THE SECOND-GENERATION GUIDE STAR CATALOG: DESCRIPTION AND PROPERTIES , 2008, 0807.2522.

[111]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[112]  A. Bolton,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. V. THE FULL ACS STRONG-LENS SAMPLE 1 , 2022 .

[113]  T. Schrabback,et al.  AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN HIGH-RESOLUTION IMAGING DATA , 2008, 0805.1469.

[114]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[115]  Y. Mellier,et al.  First Catalog of Strong Lens Candidates in the COSMOS Field , 2008, 0802.2174.

[116]  D. Calzetti,et al.  The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing , 2007, astro-ph/0703095.

[117]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[118]  J. Rhodes,et al.  The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii , 2007, astro-ph/0701589.

[119]  D. Calzetti,et al.  COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.

[120]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[121]  S. Seitz,et al.  The Sizes of Galaxy Halos in Galaxy Cluster Abell 1689 , 2006, astro-ph/0611078.

[122]  Gepi,et al.  The CFHTLS strong lensing legacy survey - I. Survey overview and T0002 release sample , 2006, astro-ph/0610362.

[123]  M. Oguri The image separation distribution of strong lenses: halo versus subhalo populations , 2005, astro-ph/0508528.

[124]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[125]  R. Beaton,et al.  Calibration of the Tip of the Red Giant Branch , 2003, The Astrophysical Journal.

[126]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[127]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[128]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[129]  G. Abell,et al.  A Catalog of Rich Clusters of Galaxies , 1989 .

[130]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[131]  I. Shapiro,et al.  On model-dependent bounds on H(0) from gravitational images Application of Q0957 + 561A,B , 1985 .

[132]  J. Gott,et al.  The Statistics of gravitational lenses: The Distributions of image angular separations and lens redshifts , 1984 .

[133]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .

[134]  D. Calzetti,et al.  The COSMOS Survey: Hubble Space Telescope / Advanced Camera for Surveys (HST/ACS) Observations and Data Processing ∗ , 2018 .

[135]  A. Ealet,et al.  The 0 . 1 < z < 1 . 65 evolution of the bright end of the [ O ] luminosity function ? , ? ? , 2015 .

[136]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[137]  T. Treu,et al.  The Internal Structure and Formation of Early-Type Galaxies: The Gravitational Lens System MG 2016+112 at z = 1.004 , 2002, astro-ph/0202342.

[138]  Sean G. Ryan,et al.  The Advanced Maui Optical and Space Surveillance Technologies Conference , 2006 .

[139]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.