Nanostructure-based thermoelectric conversion: an insight into the feasibility and sustainability for large-scale deployment.

Significant scientific progress has been achieved using nanostructured materials for thermoelectric energy harvesting and solid-state cooling through the conversion of waste heat into electricity and vice versa. However, the connection between the small-scale proof-of concept results achieved in research labs and real industrial scale manufacture is still missing. Herein we develop an analysis to determine the appropriate thermoelectric nanomaterials for the large-scale manufacture and deployment in the near future. We cover key parameters such as ZT value, cost, abundance, and toxicity. Maximum ZT values are considered at three temperature ranges. Material cost and abundance are visually demonstrated to improve ease of interpretation. Toxicity is also evaluated to minimize the environmental impact during manufacture and recycling. Lastly, a parameter termed "efficiency ratio" is calculated to give a better qualitative understanding of the feasibility and sustainability of these nanomaterials.

[1]  Frank Steglich,et al.  Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2 , 2007 .

[2]  K. Koumoto,et al.  Complex Oxide Materials for Potential Thermoelectric Applications , 2006 .

[3]  E. Godzhaev,et al.  Thermoelectric Properties of TlIn1 – xYbxTe2 (0.01 ≤ x ≤ 0.09) Crystals , 2004 .

[4]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[5]  L. Forró,et al.  High-pressure resistivity and thermoelectric power in Yb14MnSb11 , 2007 .

[6]  T. Sun,et al.  Nanostructures in high-performance (GeTe)x(AgSbTe2)100−x thermoelectric materials , 2008, Nanotechnology.

[7]  Anthony V. Powell,et al.  Recent developments in nanostructured materials for high-performance thermoelectrics , 2010 .

[8]  M. Kanatzidis,et al.  High Thermopower and Low Thermal Conductivity in Semiconducting Ternary K−Bi−Se Compounds. Synthesis and Properties of β-K2Bi8Se13 and K2.5Bi8.5Se14 and Their Sb Analogues , 1997 .

[9]  J. Teubner,et al.  High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity. , 2001, Physical review letters.

[10]  D. Rowe,et al.  Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds , 2000 .

[11]  T. Okuda,et al.  Large thermoelectric response of metallic perovskites: Sr 1 − x La x TiO 3 ( 0 x 0 . 1 ) , 2001 .

[12]  W. Jeitschko,et al.  Preparation and structural investigations of antimonides with the LaFe4P12 structure , 1980 .

[13]  R. Horne Effect of Oxide Impurities on the Thermoelectric Powers and Electrical Resistivities of Bismuth, Antimony, Tellurium, and Bismuth‐Tellurium Alloys , 1959 .

[14]  Impact of In Situ Generated Ag2Te Nanoparticles on the Microstructure and Thermoelectric Properties of AgSbTe2 Compounds , 2011 .

[15]  S. Poon,et al.  Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1−xSbx , 2000 .

[16]  Kunihito Koumoto,et al.  Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3(-). , 2008, Inorganic chemistry.

[17]  Takashi Goto,et al.  Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12(R:Ce,Ba,Y;M:Fe,Ni) , 2005 .

[18]  Koichi Eguchi,et al.  High‐temperature thermoelectric properties of (Zn1−xAlx)O , 1996 .

[19]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[20]  Yiying Wu,et al.  Thermal conductivity of Si/SiGe superlattice nanowires , 2003 .

[21]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[22]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[23]  Yongqiang Wang,et al.  β-Zn4Sb3 Nanocantilevers and Their Thermoelectric Properties , 2011 .

[24]  M. Slade Trends in natural-resource commodity prices: An analysis of the time domain , 1982 .

[25]  Qiang Shen,et al.  Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds , 2001 .

[26]  George S. Nolas,et al.  High figure of merit in partially filled ytterbium skutterudite materials , 2000 .

[27]  G. J. Snyder,et al.  Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation , 2006 .

[28]  Uher,et al.  CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications , 2000, Science.

[29]  C. Uher,et al.  Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni , 2002 .

[30]  S. Sakurada,et al.  Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds , 2005 .

[31]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[32]  G. Stucky,et al.  Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30 , 2006 .

[33]  J. Xie,et al.  Low-Temperature Solvothermal Synthesis of FeSb2 Nanorods as Li-Ion Batteries Anode Material , 2006 .

[34]  M. Dehmas,et al.  Beneficial effect of Ni substitution on the thermoelectric properties in partially filled Ca{sub y}Co{sub 4-x}Ni{sub x}Sb{sub 12} skutterudites , 2005 .

[35]  S. Yamanaka,et al.  Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity , 2005 .

[36]  Li Shi,et al.  Thermoelectric properties of individual electrodeposited bismuth telluride nanowires , 2005 .

[37]  Jean-Pierre Fleurial,et al.  Preparation and thermoelectric properties of semiconducting Zn4Sb3 , 1997 .

[38]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[39]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[40]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[41]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.

[42]  R. Asahi,et al.  Thermoelectric Properties of Highly Textured Ca-Doped (ZnO)mIn2O3 Ceramics , 2004 .

[43]  Bryan C. Chakoumakos,et al.  Thermoelectric properties of Tl2SnTe5 and Tl2GeTe5 , 1999 .

[44]  Ryoji Funahashi,et al.  Oxide Thermoelectric Materials: A Nanostructuring Approach , 2010 .

[45]  C. Erk,et al.  Nanoscale zinc antimonides: synthesis and phase stability. , 2006, Inorganic chemistry.

[46]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[47]  Min Zhou,et al.  Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.

[48]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[49]  Koichi Eguchi,et al.  Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion , 1997 .

[50]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[51]  Fei Ren,et al.  Nanostructured Thermoelectric Materials and High-Efficiency Power-Generation Modules , 2007 .

[52]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[53]  R. Solow The Economics of Resources or the Resources of Economics , 2008 .

[54]  T. Hirai,et al.  Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co-rich Ce_yFe_xCo_4−xSb_12 , 2001 .

[55]  W. Jeitschko,et al.  LaFe4P12 with filled CoAs3‐type structure and isotypic lanthanoid–transition metal polyphosphides , 1977 .

[56]  Wenzhi Li,et al.  Nanosize Transition Metal Antimonides, NiSb and FeSb2: Solvothermal Synthesis and Characterization , 2010 .

[57]  Hideo Hosono,et al.  Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. , 2007, Nature materials.

[58]  Joshua E. Goldberger,et al.  Synthesis and Thermoelectrical Characterization of Lead Chalcogenide Nanowires , 2007 .

[59]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[60]  S. K. Placheova Thermoelectric figure of merit of the system (GeTe)1−x(AgSbTe2)x , 1984 .

[61]  Kevin C. See,et al.  Water-processable polymer-nanocrystal hybrids for thermoelectrics. , 2010, Nano letters.

[62]  C Wood,et al.  Materials for thermoelectric energy conversion , 1988 .

[63]  S. Taylor,et al.  Abundance of chemical elements in the continental crust: A new table: Geochimica e t Cosmochimica Ac , 1964 .

[64]  M. Dehmas,et al.  High temperature transport properties of partially filled CaxCo4Sb12 skutterudites , 2004 .