Molecular Mechanism for Gramicidin Dimerization and Dissociation in Bilayers of Different Thickness

[1]  R. Dubos,et al.  STUDIES ON A BACTERICIDAL AGENT EXTRACTED FROM A SOIL BACILLUS , 1939, The Journal of experimental medicine.

[2]  S. Hladky,et al.  Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. , 1972, Biochimica et biophysica acta.

[3]  E. Bamberg,et al.  Temperature-dependent properties of gramicidin A channels. , 1974, Biochimica et biophysica acta.

[4]  E. Neher,et al.  The equivalence of fluctuation analysis and chemical relaxation measurements: a kinetic study of ion pore formation in thin lipid membranes. , 1974, Biophysical chemistry.

[5]  R. Benz,et al.  Voltage-induce capacitance relaxation of lipid bilayer membranes. Effects of membrane composition. , 1976, Biochimica et biophysica acta.

[6]  E. Bamberg,et al.  Influence of membrane thickness and ion concentration on the properties of the gramicidin a channel. Autocorrelation, spectral power density, relaxation and single-channel studies. , 1977, Biochimica et biophysica acta.

[7]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[8]  D. Needham,et al.  The effects of bilayer thickness and tension on gramicidin single-channel lifetime. , 1983, Biochimica et biophysica acta.

[9]  P. H. Berens,et al.  Structure and dynamics of ion transport through gramicidin A. , 1984, Biophysical journal.

[10]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[11]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[12]  H. Huang,et al.  Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. , 1986, Biophysical journal.

[13]  E. Jakobsson,et al.  Calculation of deformation energies and conformations in lipid membranes containing gramicidin channels. , 1990, Biophysical journal.

[14]  D. Sawyer,et al.  Gramicidins A, B, and C form structurally equivalent ion channels. , 1990, Biophysical journal.

[15]  O. Andersen,et al.  Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. , 1990, Science.

[16]  O. Andersen,et al.  Formation of non-beta 6.3-helical gramicidin channels between sequence-substituted gramicidin analogues. , 1992, Biophysical journal.

[17]  O. Andersen,et al.  Energetics of heterodimer formation among gramicidin analogues with an NH2-terminal addition or deletion. Consequences of missing a residue at the join in the channel. , 1993, Journal of molecular biology.

[18]  M. Karplus,et al.  Ion transport in the gramicidin channel: free energy of the solvated right-handed dimer in a model membrane , 1993 .

[19]  J. F. Hinton,et al.  Gramicidin A/short-chain phospholipid dispersions: chain length dependence of gramicidin conformation and lipid organization. , 1994, Biochemistry.

[20]  B. Roux,et al.  Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[22]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[23]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[24]  O. Andersen,et al.  The conformational preference of gramicidin channels is a function of lipid bilayer thickness 1 , 1997, FEBS letters.

[25]  Randal R Ketchem,et al.  High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. , 1997, Structure.

[26]  B. Wallace,et al.  Phospholipid chain length alters the equilibrium between pore and channel forms of gramicidin. , 1998, Faraday discussions.

[27]  M. Goulian,et al.  Energetics of inclusion-induced bilayer deformations. , 1998, Biophysical journal.

[28]  A. Voter Parallel replica method for dynamics of infrequent events , 1998 .

[29]  J. A. Lundbæk,et al.  Spring constants for channel-induced lipid bilayer deformations. Estimates using gramicidin channels. , 1999, Biophysical journal.

[30]  L. Yang,et al.  Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. , 1999, Biophysical journal.

[31]  O. Andersen,et al.  Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature. , 2000, Biophysical journal.

[32]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[33]  J. F. Hinton,et al.  Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles. , 2001, Biochemistry.

[34]  Eric J. Sorin,et al.  β-hairpin folding simulations in atomistic detail using an implicit solvent model1 , 2001 .

[35]  Michael R. Shirts,et al.  Mathematical analysis of coupled parallel simulations. , 2001, Physical review letters.

[36]  V. Pande,et al.  Absolute comparison of simulated and experimental protein-folding dynamics , 2002, Nature.

[37]  A. Cavalli,et al.  Analysis of the distributed computing approach applied to the folding of a small β peptide , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  L. E. Townsley The Three-Dimensional Structure of Gramicidin Analogs in Micellar Environments Determined Using Two-Dimensional Nuclear Magnetic Resonance Spectroscopic Techniques , 2003 .

[39]  B. Roux,et al.  Structure of gramicidin a in a lipid bilayer environment determined using molecular dynamics simulations and solid-state NMR data. , 2003, Journal of the American Chemical Society.

[40]  B. Roux,et al.  Energetics of ion conduction through the gramicidin channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Peter C. Jordan,et al.  Gating gramicidin channels in lipid bilayers: reaction coordinates and the mechanism of dissociation. , 2004, Biophysical journal.

[42]  B. Valeur,et al.  Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential) , 2005 .

[43]  E. Bamberg,et al.  Channel formation kinetics of gramicidin A in lipid bilayer membranes , 2005, The Journal of Membrane Biology.

[44]  M. de Vries,et al.  Spectroscopy of isolated gramicidin peptides. , 2006, Angewandte Chemie.

[45]  O. Andersen,et al.  Docosahexaenoic acid alters bilayer elastic properties , 2007, Proceedings of the National Academy of Sciences.

[46]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[47]  Helgi I. Ingólfsson,et al.  Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes , 2010, Journal of The Royal Society Interface.

[48]  Helgi I. Ingólfsson,et al.  Screening for small molecules' bilayer-modifying potential using a gramicidin-based fluorescence assay. , 2010, Assay and drug development technologies.

[49]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[50]  J. A. Lundbæk,et al.  Amphiphile regulation of ion channel function by changes in the bilayer spring constant , 2010, Proceedings of the National Academy of Sciences.

[51]  Bert L. de Groot,et al.  g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates , 2010 .

[52]  Helgi I. Ingólfsson,et al.  Gramicidin-based fluorescence assay; for determining small molecules potential for modifying lipid bilayer properties. , 2010, Journal of visualized experiments : JoVE.

[53]  O. Andersen,et al.  Polar groups in membrane channels: consequences of replacing alanines with serines in membrane-spanning gramicidin channels. , 2010, Biochemistry.

[54]  Per Greisen,et al.  Linear rate-equilibrium relations arising from ion channel-bilayer energetic coupling , 2011, Proceedings of the National Academy of Sciences.

[55]  Helgi I. Ingólfsson,et al.  Alcohol's effects on lipid bilayer properties. , 2011, Biophysical journal.

[56]  J. F. Hinton,et al.  Gramicidin A backbone and side chain dynamics evaluated by molecular dynamics simulations and nuclear magnetic resonance experiments. I: molecular dynamics simulations. , 2011, The journal of physical chemistry. B.

[57]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[58]  O. Andersen,et al.  Thiazolidinedione insulin sensitizers alter lipid bilayer properties and voltage-dependent sodium channel function: implications for drug discovery , 2011, The Journal of general physiology.

[59]  J. Stember,et al.  A One-Dimensional Continuum Elastic Model for Membrane-Embedded Gramicidin Dimer Dissociation , 2011, PloS one.

[60]  W. Im,et al.  Influence of hydrophobic mismatch on structures and dynamics of gramicidin a and lipid bilayers. , 2012, Biophysical journal.

[61]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[62]  C. Nathan,et al.  Whole Cell Screen for Inhibitors of pH Homeostasis in Mycobacterium tuberculosis , 2013, PloS one.

[63]  Helgi I. Ingólfsson,et al.  Volatile anesthetics inhibit sodium channels without altering bulk lipid bilayer properties , 2014, The Journal of general physiology.

[64]  C. Mukhopadhyay,et al.  Ion channel stability of Gramicidin A in lipid bilayers: effect of hydrophobic mismatch. , 2014, Biochimica et biophysica acta.

[65]  Massimiliano Bonomi,et al.  PLUMED 2: New feathers for an old bird , 2013, Comput. Phys. Commun..

[66]  O. Andersen,et al.  A general mechanism for drug promiscuity: Studies with amiodarone and other antiarrhythmics , 2015, The Journal of general physiology.

[67]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[68]  O. Andersen,et al.  Bilayer Effects of Antimalarial Compounds , 2015, PloS one.

[69]  O. Andersen,et al.  Clinical concentrations of chemically diverse general anesthetics minimally affect lipid bilayer properties , 2017, Proceedings of the National Academy of Sciences.

[70]  Andrew H. Beaven,et al.  Characterizing Residue-Bilayer Interactions Using Gramicidin A as a Scaffold and Tryptophan Substitutions as Probes. , 2017, Journal of chemical theory and computation.

[71]  Andrew H. Beaven,et al.  Gramicidin A Channel Formation Induces Local Lipid Redistribution II: A 3D Continuum Elastic Model. , 2017, Biophysical journal.

[72]  Helgi I. Ingólfsson,et al.  Exchange of Gramicidin between Lipid Bilayers: Implications for the Mechanism of Channel Formation. , 2017, Biophysical journal.

[73]  R. Best,et al.  Convergence and Sampling in Determining Free Energy Landscapes for Membrane Protein Association , 2016, The journal of physical chemistry. B.

[74]  F. Noé,et al.  Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling , 2017, Nature Chemistry.

[75]  K. Lindorff-Larsen,et al.  Biomolecular conformational changes and ligand binding: from kinetics to thermodynamics† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc01627a , 2017, Chemical science.

[76]  Andrew H. Beaven,et al.  Gramicidin A Channel Formation Induces Local Lipid Redistribution I: Experiment and Simulation. , 2017, Biophysical journal.

[77]  Albert C. Pan,et al.  Atomic-level characterization of protein–protein association , 2018, Proceedings of the National Academy of Sciences.