Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1).

Two prominent vascular endothelial growth factor (VEGF)-induced retinal effects are vascular permeability and capillary nonperfusion. The mechanisms by which these effects occur are not completely known. Using a rat model, we show that intravitreous injections of VEGF precipitate an extensive retinal leukocyte stasis (leukostasis) that coincides with enhanced vascular permeability and capillary nonperfusion. The leukostasis is accompanied by the up-regulation of intercellular adhesion molecule-1 expression in the retina. The inhibition of intercellular adhesion molecule-1 bioactivity with a neutralizing antibody prevents the permeability and leukostasis increases by 79% and 54%, respectively. These data are the first to demonstrate that a nonendothelial cell type contributes to VEGF-induced vascular permeability. Additionally, they identify a potential mechanism for VEGF-induced retinal capillary nonperfusion.

[1]  K Miyamoto,et al.  VEGF increases retinal vascular ICAM-1 expression in vivo. , 1999, Investigative ophthalmology & visual science.

[2]  K Miyamoto,et al.  Visualization and quantitative analysis of leukocyte dynamics in retinal microcirculation of rats. , 1996, Investigative ophthalmology & visual science.

[3]  Hidehiro Ishii,et al.  Vascular Endothelial Growth Factor–Induced Retinal Permeability Is Mediated by Protein Kinase C In Vivo and Suppressed by an Orally Effective β-Isoform–Selective Inhibitor , 1997, Diabetes.

[4]  R K Jain,et al.  Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. , 1998, The Journal of investigative dermatology.

[5]  R. Folberg,et al.  Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy. , 1996, The British journal of ophthalmology.

[6]  V. Perry,et al.  Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood–brain barrier breakdown in vivo , 1998, Neuroscience.

[7]  A Mathis,et al.  Detection of vascular endothelial growth factor messenger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. , 1994, Archives of ophthalmology.

[8]  P. Campochiaro,et al.  Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. , 1997, The American journal of pathology.

[9]  S. Soker,et al.  Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. , 1995, Cancer research.

[10]  D. Lefer,et al.  Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. , 1995, The American journal of pathology.

[11]  L. Aiello,et al.  Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  K Miyamoto,et al.  In vivo demonstration of increased leukocyte entrapment in retinal microcirculation of diabetic rats. , 1998, Investigative ophthalmology & visual science.

[13]  L. Aiello,et al.  Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. , 1994, The New England journal of medicine.

[14]  R. Jain,et al.  During angiogenesis, vascular endothelial growth factor regulate natural killer cell adhesion to tumor endothelium , 1996, Nature Medicine.

[15]  Y. Hata,et al.  Vascular endothelial growth factor plays a role in hyperpermeability of diabetic retinal vessels. , 1995, Ophthalmic research.

[16]  J. Williamson,et al.  Vascular dysfunction induced by elevated glucose levels in rats is mediated by vascular endothelial growth factor. , 1997, The Journal of clinical investigation.

[17]  Joan W. Miller,et al.  Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. , 1994, American journal of ophthalmology.

[18]  G. Schmid-Schönbein,et al.  Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. , 1991, The American journal of pathology.

[19]  T. Horiuchi,et al.  Expression of vascular endothelial growth factor by human eosinophils: upregulation by granulocyte macrophage colony-stimulating factor and interleukin-5. , 1997, American journal of respiratory cell and molecular biology.

[20]  J. El Benna,et al.  Intracellular pool of vascular endothelial growth factor in human neutrophils. , 1997, Blood.

[21]  G. Palade,et al.  Neovasculature induced by vascular endothelial growth factor is fenestrated. , 1997, Cancer research.

[22]  F. Kruse,et al.  In vivo significance of ICAM-1--dependent leukocyte adhesion in early corneal angiogenesis. , 1999, Investigative ophthalmology & visual science.

[23]  D. Connolly,et al.  Human mesangial cells and peripheral blood mononuclear cells produce vascular permeability factor. , 1993, Kidney international.

[24]  S. Rafii,et al.  Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[25]  K. Kawasaki,et al.  Antibodies against intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1 prevent glomerular injury in rat experimental crescentic glomerulonephritis. , 1993, Journal of immunology.

[26]  E S Gragoudas,et al.  Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. , 1996, Ophthalmology.

[27]  G. Palade,et al.  Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. , 1995, Journal of cell science.

[28]  D. Connolly,et al.  Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytes. , 1993, Blood.

[29]  A. Arbor,et al.  Molecular determinants of reperfusion-induced leukocyte adhesion and vascular protein leakage. , 1994, Circulation research.

[30]  D. Lefer,et al.  Vascular endothelial growth factor attenuates leukocyte–endothelium interaction during acute endothelial dysfunction: essential role of endothelium‐derived nitric oxide , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[31]  R. Colvin,et al.  Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Corada,et al.  Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions , 1996, The Journal of cell biology.

[33]  M. Miyasaka,et al.  Identification of monoclonal antibodies reactive with the rat homolog of ICAM-1, and evidence for a differential involvement of ICAM-1 in the adherence of resting versus activated lymphocytes to high endothelial cells. , 1990, International immunology.

[34]  K. Miyarnoto Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition , 1999 .

[35]  J. Tarbell,et al.  Physiological transport properties of cultured retinal microvascular endothelial cell monolayers. , 1997, Current eye research.