Qualitatively accurate spectral schemes for advection and transport

The transport and continuum equations exhibit a number of conservation laws. For example, scalar multiplication is conserved by the transport equation, while positivity of probabilities is conserved by the continuum equation. Certain discretization techniques, such as particle based methods, conserve these properties, but converge slower than spectral discretization methods on smooth data. Standard spectral discretization methods, on the other hand, do not conserve the invariants of the transport equation and the continuum equation. This article constructs a novel spectral discretization technique that conserves these important invariants while simultaneously preserving spectral convergence rates. The performance of this proposed method is illustrated on several numerical experiments.

[1]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .

[2]  Péter Koltai,et al.  Pseudogenerators of Spatial Transfer Operators , 2014, SIAM J. Appl. Dyn. Syst..

[3]  Keenan Crane,et al.  Robust fairing via conformal curvature flow , 2013, ACM Trans. Graph..

[4]  Didier Henrion,et al.  Convex Computation of the Region of Attraction of Polynomial Control Systems , 2012, IEEE Transactions on Automatic Control.

[5]  Gary Froyland,et al.  Estimating Long-Term Behavior of Flows without Trajectory Integration: The Infinitesimal Generator Approach , 2011, SIAM J. Numer. Anal..

[6]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[7]  Péter Koltai,et al.  Efficient Approximation Methods for the Global Long-Term Behavior of Dynamical Systems - Theory, Algorithms and Examples , 2010 .

[8]  M. Renardy,et al.  Symmetric factorization of the conformation tensor in viscoelastic fluid models , 2010, 1006.3488.

[9]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[10]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[11]  G. Froyland,et al.  Almost-invariant sets and invariant manifolds — Connecting probabilistic and geometric descriptions of coherent structures in flows , 2009 .

[12]  Shahla Molahajloo,et al.  Pseudo-Differential Operators on ℤ , 2009 .

[13]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[14]  Amos Gilat,et al.  Matlab, An Introduction With Applications , 2003 .

[15]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[16]  D. Gottlieb,et al.  Spectral methods for hyperbolic problems , 2001 .

[17]  Paul Adrien Maurice Dirac,et al.  Lectures on Quantum Mechanics , 2001 .

[18]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[19]  Emmanuel Hebey Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .

[20]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[21]  Antonella Zanna,et al.  Numerical solution of isospectral flows , 1997, Math. Comput..

[22]  A. Weinstein,et al.  Lectures on the geometry of quantization , 1995 .

[23]  P. Meyer,et al.  Quantum Probability for Probabilists , 1993 .

[24]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[25]  William H. Press,et al.  Numerical recipes , 1990 .

[26]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[27]  R. LeVeque Numerical methods for conservation laws , 1990 .

[28]  J. Boyd Chebyshev and Fourier Spectral Methods , 1989 .

[29]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[30]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[31]  I. M. Gelfand,et al.  On the embedding of normed rings into the ring of operators in Hilbert space , 1987 .

[32]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[33]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[34]  J. Pasciak Spectral and pseudospectral methods for advection equations , 1980 .

[35]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[36]  Clifford Ambrose Truesdell,et al.  A first course in rational continuum mechanics , 1976 .

[37]  I. Gel'fand,et al.  REPRESENTATIONS OF THE GROUP OF DIFFEOMORPHISMS , 1975 .

[38]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[39]  S. M. Ulam,et al.  On Combination of Stochastic and Deterministic Processes , 1947 .

[40]  И.М. Гельфанд,et al.  On the imbedding of normed rings into the ring of operators in Hilbert space , 1943 .

[41]  J. Rogers Chaos , 1876, Molecular Vibrations.