Classification Enhancement via Biometric Pattern Perturbation

This paper presents a novel technique for improving face recognition performance by predicting system failure, and, if necessary, perturbing eye coordinate inputs and repredicting failure as a means of selecting the optimal perturbation for correct classification. This relies on a method that can accurately identify patterns that can lead to more accurate classification, without modifying the classification algorithm itself. To this end, a neural network is used to learn 'good' and 'bad' wavelet transforms of similarity score distributions from an analysis of the gallery. In production, face images with a high likelihood of having been incorrectly matched are reprocessed using perturbed eye coordinate inputs, and the best results used to “correct” the initial results. The overall approach suggest a more general approach involving the use of input perturbations for increasing classifier performance in general. Results for both commercial and research face-based biometrics are presented using both simulated and real data. The statistically significant results show the strong potential for this to improve system performance, especially with uncooperative subjects.