Classifying functional time series
暂无分享,去创建一个
[1] Tom Fearn,et al. Discrimination with Many Variables , 1999 .
[2] Siem Jan Koopman,et al. MESSY TIME SERIES: A UNIFIED APPROACH , 2009 .
[3] Andrew Chi-Sing Leung,et al. An improved sequential method for principal component analysis , 2003, Pattern Recognit. Lett..
[4] Jianxin Wang,et al. Spatio-temporal target identification method of high-range resolution radar , 2000, Pattern Recognit..
[5] B. K. Alsberg. Representation of spectra by continuous functions , 1993 .
[6] Ana M. Aguilera,et al. Functional Principal Components Analysis by Choice of Norm , 1999 .
[7] Philippe C. Besse,et al. Autoregressive Forecasting of Some Functional Climatic Variations , 2000 .
[8] W. V. McCarthy,et al. Discriminant Analysis with Singular Covariance Matrices: Methods and Applications to Spectroscopic Data , 1995 .
[9] Serge Guillas,et al. The inclusion of exogenous variables in functional autoregressive ozone forecasting , 2002 .
[10] Siem Jan Koopman,et al. MESSY TIME SERIES , 1999 .
[11] Jürgen Groß. Restricted ridge estimation , 2003 .
[12] Christa Neuper,et al. Hidden Markov models for online classification of single trial EEG data , 2001, Pattern Recognit. Lett..
[13] Non-causalité et discrétisation fonctionnelle, théorèmes limites pour un processus ARHX(1) , 2000 .
[14] C.W. Anderson,et al. Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks , 1998, IEEE Transactions on Biomedical Engineering.
[15] D. G. Simpson,et al. Robust principal component analysis for functional data , 2007 .
[16] Daniel J. Inman,et al. Sensor Validation for Smart Structures , 1999 .
[17] Prédiction des processus à temps continu autorégressifs via les espaces à noyau reproduisant , 2002 .
[18] Edoardo Ardizzone,et al. Using Temporal Texture for Content-Based Video Retrieval , 2000, J. Vis. Lang. Comput..
[19] R. H. Shumway,et al. 1 Discriminant analysis for time series , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.
[20] P. Robinson,et al. 11 Autocorrelation-robust inference , 1997 .
[21] Friedemann Pulvermüller,et al. Neural Network Classification of Word Evoked Neuromagnetic Brain Activity , 2001, Emergent Neural Computational Architectures Based on Neuroscience.
[22] Juan C. Jiménez,et al. Modeling the electroencephalogram by means of spatial spline smoothing and temporal autoregression , 1995, Biological Cybernetics.
[23] T. Koenig,et al. Topographic Time-Frequency Decomposition of the EEG , 2001, NeuroImage.
[24] H. Cardot. Nonparametric estimation of smoothed principal components analysis of sampled noisy functions , 2000 .
[25] Joydeep Ghosh,et al. Habituation based neural networks for spatio-temporal classification , 1997, Neurocomputing.
[26] Stephen J. Roberts,et al. Bayesian time series classification , 2001, NIPS.
[27] M. D. Ruiz-Medina,et al. Spatio-temporal filtering using wavelets , 2002 .
[28] U. Naik-Nimbalkar,et al. Optimal unbiased statistical estimating functions for Hilbert space valued parameters , 1990 .
[29] Richard H. Glendinning,et al. Classifying non-uniformly sampled vector-valued curves , 2004, Pattern Recognit..
[30] Simon A. Beaulah,et al. A real-time knowledge-based system for intelligent monitoring in complex, sensor-rich environments , 1998 .
[31] Jeffrey D. Scargle. PHASE-SENSITIVE DECONVOLUTION TO MODEL RANDOM PROCESSES, WITH SPECIAL REFERENCE TO ASTRONOMICAL DATA* , 1981 .
[32] Robert H. Shumway,et al. Discrimination and Clustering for Multivariate Time Series , 1998 .
[33] Michael Isard,et al. Learning and Classification of Complex Dynamics , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[34] Sheng Chen,et al. Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design , 2003, IEEE Trans. Autom. Control..
[35] T. Mourid,et al. Estimation et prévision d'un processus autorégressif Banach , 2002 .
[36] Paul W. Fieguth,et al. Statistical processing of large image sequences , 2005, IEEE Transactions on Image Processing.
[37] Ramaswamy Palaniappan,et al. Method of identifying individuals using VEP signals and neural network , 2004 .
[38] Karl J. Friston,et al. Statistical parametric maps in functional imaging: A general linear approach , 1994 .
[39] Emery N. Brown,et al. Locally Regularized Spatiotemporal Modeling and Model Comparison for Functional MRI , 2001, NeuroImage.
[40] G. Pfurtscheller,et al. Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.
[41] S. Chen,et al. Multi-output regression using a locally regularised orthogonal least-squares algorithm , 2002 .
[42] Estimation and Prediction of Functional Autoregressive Processes , 2002 .
[43] Pedro A. Valdes-Sosa,et al. Spatio-temporal autoregressive models defined over brain manifolds , 2007, Neuroinformatics.
[44] T. Mourid. Statistiques d'une saisonnalité perturbée par un processus a représentation autorégressive , 2002 .
[45] Raveendran Paramesran,et al. VEP optimal channel selection using genetic algorithm for neural network classification of alcoholics , 2002, IEEE Trans. Neural Networks.
[46] F. J. Alonso,et al. The Kriged Kalman filter , 1998 .
[47] Rangasami L. Kashyap,et al. Optimal feature selection and decision rules in classification problems with time series , 1978, IEEE Trans. Inf. Theory.
[48] Raquel Prado,et al. Multichannel electroencephalographic analyses via dynamic regression models with time‐varying lag–lead structure , 2001 .
[49] F. J. Alonso,et al. Functional stochastic modeling and prediction of spatiotemporal processes , 2003 .
[50] Phaedon C. Kyriakidis,et al. Geostatistical Space–Time Models: A Review , 1999 .
[51] Philip Jonathan,et al. Efficient Bayesian sampling inspection for industrial processes based on transformed spatio-temporal data , 2004 .
[52] B. Silverman,et al. Functional Data Analysis , 1997 .
[53] Samir M. Shaarawy,et al. Bayesian classification with multivariate autoregressive sources that might have different orders , 1995 .
[54] J. G. Snodgrass,et al. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. , 1980, Journal of experimental psychology. Human learning and memory.
[55] N. Cressie,et al. A dimension-reduced approach to space-time Kalman filtering , 1999 .
[56] Estimateur « sieve » de l'opérateur d'un processus ARH(1) , 2001 .
[57] H. Begleiter,et al. Event related potentials during object recognition tasks , 1995, Brain Research Bulletin.
[58] Philippe C. Besse,et al. Approximation spline de la prvision d'un processus fonctionnel autorgressif d'ordre 1 , 1996 .
[59] Anestis Antoniadis,et al. Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes , 2003 .
[60] D. Bosq. Linear Processes in Function Spaces: Theory And Applications , 2000 .
[61] F. Perrin,et al. Spherical splines for scalp potential and current density mapping. , 1989, Electroencephalography and clinical neurophysiology.
[62] P. Sarda,et al. SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .
[63] Denis Bosq,et al. Modelization, Nonparametric Estimation and Prediction for Continuous Time Processes , 1991 .
[64] M. Arnold,et al. Instantaneous multivariate EEG coherence analysis by means of adaptive high-dimensional autoregressive models , 2001, Journal of Neuroscience Methods.
[65] Patrick Clarysse,et al. Tracking geometrical descriptors on 3-D deformable surfaces: application to the left-ventricular surface of the heart , 1997, IEEE Transactions on Medical Imaging.
[66] C. Windischberger,et al. Co-Registration of EEG and MRI Data Using Matching of Spline Interpolated and MRI-Segmented Reconstructions of the Scalp Surface , 2004, Brain Topography.
[67] Jonathan R. Stroud,et al. Dynamic models for spatiotemporal data , 2001 .
[68] Peter Hall,et al. A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.
[69] Christian Wöhler,et al. An adaptable time-delay neural-network algorithm for image sequence analysis , 1999, IEEE Trans. Neural Networks.
[70] Alexey Kaplan,et al. Mapping tropical Pacific sea level : Data assimilation via a reduced state space Kalman filter , 1996 .
[71] S. Roberts,et al. Bayesian multivariate autoregressive models with structured priors , 2002 .
[72] C J Harris,et al. Sparse Kernel Regression Modelling using combined locally regularised orthogonal least squares and D-Optimality , 2003 .
[73] Ulrich Kressel,et al. Pedestrian recognition by classification of image sequences - global approaches vs. local spatio-temporal processing , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.
[74] S. Koreisha,et al. The selection of the order and identification of nonzero elements in the polynomial matrices of vector autoregressive processes , 1999 .