Classifying functional time series

We consider the problem of classifying a high-dimensional time series into a number of disjoint classes defined by training data. Techniques of this type are an important component of a number of emerging technologies. These include the use of dense sensor arrays for condition monitoring, brain-computer interfaces for communications and control, the detection of moving pedestrians from sequences of images and the study of cognitive function using high-resolution electroencephalography (EEG). We propose a novel approach to problems of this type using the parameters of an underlying functional auto-regression model. We compare the performance of this approach using two contrasting data sets. The first is based on simulated series with different characteristics and sampling schemes and a second based on high-dimensional times series generated by multi-channel EEG. Both experiments show that our approach outperforms conventional time series methods by exploiting low-intrinsic dimensionality (smoothness). In addition, our simulation experiments show that good performance can be maintained for data generated by non-stationary sampling schemes, the Latter causing large reductions in the performance of conventional procedures. These experiments suggest that meaningful information can be extracted from high-resolution EEG.

[1]  Tom Fearn,et al.  Discrimination with Many Variables , 1999 .

[2]  Siem Jan Koopman,et al.  MESSY TIME SERIES: A UNIFIED APPROACH , 2009 .

[3]  Andrew Chi-Sing Leung,et al.  An improved sequential method for principal component analysis , 2003, Pattern Recognit. Lett..

[4]  Jianxin Wang,et al.  Spatio-temporal target identification method of high-range resolution radar , 2000, Pattern Recognit..

[5]  B. K. Alsberg Representation of spectra by continuous functions , 1993 .

[6]  Ana M. Aguilera,et al.  Functional Principal Components Analysis by Choice of Norm , 1999 .

[7]  Philippe C. Besse,et al.  Autoregressive Forecasting of Some Functional Climatic Variations , 2000 .

[8]  W. V. McCarthy,et al.  Discriminant Analysis with Singular Covariance Matrices: Methods and Applications to Spectroscopic Data , 1995 .

[9]  Serge Guillas,et al.  The inclusion of exogenous variables in functional autoregressive ozone forecasting , 2002 .

[10]  Siem Jan Koopman,et al.  MESSY TIME SERIES , 1999 .

[11]  Jürgen Groß Restricted ridge estimation , 2003 .

[12]  Christa Neuper,et al.  Hidden Markov models for online classification of single trial EEG data , 2001, Pattern Recognit. Lett..

[13]  Non-causalité et discrétisation fonctionnelle, théorèmes limites pour un processus ARHX(1) , 2000 .

[14]  C.W. Anderson,et al.  Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks , 1998, IEEE Transactions on Biomedical Engineering.

[15]  D. G. Simpson,et al.  Robust principal component analysis for functional data , 2007 .

[16]  Daniel J. Inman,et al.  Sensor Validation for Smart Structures , 1999 .

[17]  Prédiction des processus à temps continu autorégressifs via les espaces à noyau reproduisant , 2002 .

[18]  Edoardo Ardizzone,et al.  Using Temporal Texture for Content-Based Video Retrieval , 2000, J. Vis. Lang. Comput..

[19]  R. H. Shumway,et al.  1 Discriminant analysis for time series , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[20]  P. Robinson,et al.  11 Autocorrelation-robust inference , 1997 .

[21]  Friedemann Pulvermüller,et al.  Neural Network Classification of Word Evoked Neuromagnetic Brain Activity , 2001, Emergent Neural Computational Architectures Based on Neuroscience.

[22]  Juan C. Jiménez,et al.  Modeling the electroencephalogram by means of spatial spline smoothing and temporal autoregression , 1995, Biological Cybernetics.

[23]  T. Koenig,et al.  Topographic Time-Frequency Decomposition of the EEG , 2001, NeuroImage.

[24]  H. Cardot Nonparametric estimation of smoothed principal components analysis of sampled noisy functions , 2000 .

[25]  Joydeep Ghosh,et al.  Habituation based neural networks for spatio-temporal classification , 1997, Neurocomputing.

[26]  Stephen J. Roberts,et al.  Bayesian time series classification , 2001, NIPS.

[27]  M. D. Ruiz-Medina,et al.  Spatio-temporal filtering using wavelets , 2002 .

[28]  U. Naik-Nimbalkar,et al.  Optimal unbiased statistical estimating functions for Hilbert space valued parameters , 1990 .

[29]  Richard H. Glendinning,et al.  Classifying non-uniformly sampled vector-valued curves , 2004, Pattern Recognit..

[30]  Simon A. Beaulah,et al.  A real-time knowledge-based system for intelligent monitoring in complex, sensor-rich environments , 1998 .

[31]  Jeffrey D. Scargle PHASE-SENSITIVE DECONVOLUTION TO MODEL RANDOM PROCESSES, WITH SPECIAL REFERENCE TO ASTRONOMICAL DATA* , 1981 .

[32]  Robert H. Shumway,et al.  Discrimination and Clustering for Multivariate Time Series , 1998 .

[33]  Michael Isard,et al.  Learning and Classification of Complex Dynamics , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Sheng Chen,et al.  Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design , 2003, IEEE Trans. Autom. Control..

[35]  T. Mourid,et al.  Estimation et prévision d'un processus autorégressif Banach , 2002 .

[36]  Paul W. Fieguth,et al.  Statistical processing of large image sequences , 2005, IEEE Transactions on Image Processing.

[37]  Ramaswamy Palaniappan,et al.  Method of identifying individuals using VEP signals and neural network , 2004 .

[38]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[39]  Emery N. Brown,et al.  Locally Regularized Spatiotemporal Modeling and Model Comparison for Functional MRI , 2001, NeuroImage.

[40]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[41]  S. Chen,et al.  Multi-output regression using a locally regularised orthogonal least-squares algorithm , 2002 .

[42]  Estimation and Prediction of Functional Autoregressive Processes , 2002 .

[43]  Pedro A. Valdes-Sosa,et al.  Spatio-temporal autoregressive models defined over brain manifolds , 2007, Neuroinformatics.

[44]  T. Mourid Statistiques d'une saisonnalité perturbée par un processus a représentation autorégressive , 2002 .

[45]  Raveendran Paramesran,et al.  VEP optimal channel selection using genetic algorithm for neural network classification of alcoholics , 2002, IEEE Trans. Neural Networks.

[46]  F. J. Alonso,et al.  The Kriged Kalman filter , 1998 .

[47]  Rangasami L. Kashyap,et al.  Optimal feature selection and decision rules in classification problems with time series , 1978, IEEE Trans. Inf. Theory.

[48]  Raquel Prado,et al.  Multichannel electroencephalographic analyses via dynamic regression models with time‐varying lag–lead structure , 2001 .

[49]  F. J. Alonso,et al.  Functional stochastic modeling and prediction of spatiotemporal processes , 2003 .

[50]  Phaedon C. Kyriakidis,et al.  Geostatistical Space–Time Models: A Review , 1999 .

[51]  Philip Jonathan,et al.  Efficient Bayesian sampling inspection for industrial processes based on transformed spatio-temporal data , 2004 .

[52]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[53]  Samir M. Shaarawy,et al.  Bayesian classification with multivariate autoregressive sources that might have different orders , 1995 .

[54]  J. G. Snodgrass,et al.  A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. , 1980, Journal of experimental psychology. Human learning and memory.

[55]  N. Cressie,et al.  A dimension-reduced approach to space-time Kalman filtering , 1999 .

[56]  Estimateur « sieve » de l'opérateur d'un processus ARH(1) , 2001 .

[57]  H. Begleiter,et al.  Event related potentials during object recognition tasks , 1995, Brain Research Bulletin.

[58]  Philippe C. Besse,et al.  Approximation spline de la prvision d'un processus fonctionnel autorgressif d'ordre 1 , 1996 .

[59]  Anestis Antoniadis,et al.  Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes , 2003 .

[60]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[61]  F. Perrin,et al.  Spherical splines for scalp potential and current density mapping. , 1989, Electroencephalography and clinical neurophysiology.

[62]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .

[63]  Denis Bosq,et al.  Modelization, Nonparametric Estimation and Prediction for Continuous Time Processes , 1991 .

[64]  M. Arnold,et al.  Instantaneous multivariate EEG coherence analysis by means of adaptive high-dimensional autoregressive models , 2001, Journal of Neuroscience Methods.

[65]  Patrick Clarysse,et al.  Tracking geometrical descriptors on 3-D deformable surfaces: application to the left-ventricular surface of the heart , 1997, IEEE Transactions on Medical Imaging.

[66]  C. Windischberger,et al.  Co-Registration of EEG and MRI Data Using Matching of Spline Interpolated and MRI-Segmented Reconstructions of the Scalp Surface , 2004, Brain Topography.

[67]  Jonathan R. Stroud,et al.  Dynamic models for spatiotemporal data , 2001 .

[68]  Peter Hall,et al.  A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.

[69]  Christian Wöhler,et al.  An adaptable time-delay neural-network algorithm for image sequence analysis , 1999, IEEE Trans. Neural Networks.

[70]  Alexey Kaplan,et al.  Mapping tropical Pacific sea level : Data assimilation via a reduced state space Kalman filter , 1996 .

[71]  S. Roberts,et al.  Bayesian multivariate autoregressive models with structured priors , 2002 .

[72]  C J Harris,et al.  Sparse Kernel Regression Modelling using combined locally regularised orthogonal least squares and D-Optimality , 2003 .

[73]  Ulrich Kressel,et al.  Pedestrian recognition by classification of image sequences - global approaches vs. local spatio-temporal processing , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[74]  S. Koreisha,et al.  The selection of the order and identification of nonzero elements in the polynomial matrices of vector autoregressive processes , 1999 .