Lifshitz Transitions Induced by Temperature and Surface Doping in Type‐II Weyl Semimetal Candidate Td‐WTe2
暂无分享,去创建一个
L. Fu | C. Felser | Yan Sun | Yulin Chen | Binghai Yan | Z. Hussain | Ming-Hui Lu | Juan Jiang | X. Qian | S. Mo | S. Yao | Zhongkai Liu | Lexian Yang | Qi-he Zhang | Haifeng Yang | Ming-Hui Lu | L. Fu
[1] Lin Zhao,et al. Temperature-induced Lifshitz transition in topological insulator candidate HfTe5. , 2017, Science bulletin.
[2] Kang L. Wang,et al. Composition and temperature-dependent phase transition in miscible Mo1−xWxTe2 single crystals , 2017, Scientific Reports.
[3] Yulin Chen,et al. Quantum spin Hall state in monolayer 1T'-WTe2 , 2017, Nature Physics.
[4] P. Canfield,et al. Three-dimensionality of the bulk electronic structure in WTe2 , 2017, 1701.06667.
[5] K. Ishizaka,et al. Observation of spin-polarized bands and domain-dependent Fermi arcs in polar Weyl semimetal MoT e 2 , 2016, 1611.02168.
[6] Zaiyao Fei,et al. Edge conduction in monolayer WTe2 , 2016, Nature Physics.
[7] X. Wan,et al. Temperature effect on lattice and electronic structures of WTe2 from first-principles study , 2016, 1609.03716.
[8] Yan-Feng Chen,et al. Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe_{1.98} Crystals at the Quasiclassical Regime. , 2016, Physical review letters.
[9] C. Felser,et al. Signature of type-II Weyl semimetal phase in MoTe2 , 2016, Nature Communications.
[10] Lin Zhao,et al. Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5 , 2016, Nature Communications.
[11] Zu-Yan Xu,et al. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2 , 2016 .
[12] M. Vergniory,et al. Surface Fermi arc connectivity in the type-II Weyl semimetal candidate WTe 2 , 2016, 1608.05633.
[13] M. Chou,et al. Spin texture in type-II Weyl semimetal WTe 2 , 2016, 1606.00085.
[14] Timur K. Kim,et al. Fermi Arcs and Their Topological Character in the Candidate Type-II Weyl Semimetal MoTe 2 , 2016, 1604.08228.
[15] P. Canfield,et al. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2 , 2016, 1604.05176.
[16] Lin Zhao,et al. Spectroscopic Evidence of Type II Weyl Semimetal State in WTe2 , 2016, 1604.04218.
[17] S. M. Walker,et al. Surface states and bulk electronic structure in the candidate type-II Weyl semimetal WTe2 , 2016 .
[18] S. M. Walker,et al. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WT e 2 , 2016, 1604.02411.
[19] Z. J. Wang,et al. Discovery of Weyl semimetal state violating Lorentz invariance in MoTe2 , 2016, 1604.02116.
[20] Lin Zhao,et al. Electronic Evidence for Type II Weyl Semimetal State in MoTe2 , 2016, 1604.01706.
[21] W. Duan,et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.
[22] Timothy M. McCormick,et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.
[23] R. Cava,et al. Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2 , 2016, Nature Communications.
[24] M. Troyer,et al. MoTe_{2}: A Type-II Weyl Topological Metal. , 2015, Physical review letters.
[25] Su-Yang Xu,et al. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2 , 2015, Nature Communications.
[26] C. Felser,et al. Superconductivity in Weyl semimetal candidate MoTe2 , 2015, Nature Communications.
[27] C. Felser,et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. , 2016, Nature materials.
[28] M. Troyer,et al. MoTe2: Weyl and Line Node Topological Metal , 2015 .
[29] Yan Sun,et al. Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP , 2015, 1508.06649.
[30] C. Felser,et al. Erratum: Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.
[31] Su-Yang Xu,et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide , 2015, Nature Physics.
[32]
C. Felser,et al.
Prediction of Weyl semimetal in orthorhombic
[33] Xi Dai,et al. Type-II Weyl semimetals , 2015, Nature.
[34] Su-Yang Xu,et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class , 2015, Nature Communications.
[35] R. Arita,et al. Temperature-Induced Lifshitz Transition in WTe2. , 2015, Physical review letters.
[36] X. Dai,et al. Observation of Weyl nodes in TaAs , 2015, Nature Physics.
[37] Timur K. Kim,et al. Signature of Strong Spin-Orbital Coupling in the Large Nonsaturating Magnetoresistance Material WTe2. , 2015, Physical review letters.
[38] Xianhui Chen. Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.
[39] Shuang Jia,et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.
[40] Guanghou Wang,et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride , 2015, Nature Communications.
[41] X. Dai,et al. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.
[42] S. Murakami,et al. Weyl Node and Spin Texture in Trigonal Tellurium and Selenium. , 2014, Physical review letters.
[43] Junwei Liu,et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides , 2014, Science.
[44] D. Vanderbilt,et al. Weyl semimetals from noncentrosymmetric topological insulators , 2014, 1409.6399.
[45] Q. Gibson,et al. Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.
[46] Arash A. Mostofi,et al. An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..
[47] R. Cava,et al. Electronic structure basis for the extraordinary magnetoresistance in WTe2. , 2014, Physical review letters.
[48] L. Fu,et al. Quantum Spin Hall Effect and Topological Field Effect Transistor in Two-Dimensional Transition Metal Dichalcogenides , 2014, 1406.2749.
[49] K. Landsteiner. Anomalous transport of Weyl fermions in Weyl semimetals , 2013, 1306.4932.
[50] J. Carbotte,et al. Magneto-optical conductivity of Weyl semimetals , 2013, 1305.0275.
[51] M Zahid Hasan,et al. Topological electronic structure and Weyl semimetal in the TlBiSe2class of semiconductors , 2012, 1209.5896.
[52] P. Hosur. Friedel oscillations due to Fermi arcs in Weyl semimetals , 2012, 1208.0027.
[53] Y. Tokura,et al. Giant Rashba-type spin splitting in bulk BiTeI. , 2011, Nature materials.
[54] Xi Dai,et al. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.
[55] Leon Balents,et al. Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.
[56] Ashvin Vishwanath,et al. Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .
[57] R. Hatch,et al. Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3. , 2011, Physical review letters.
[58] N. Marzari,et al. wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..
[59] M. Sancho,et al. Quick iterative scheme for the calculation of transfer matrices: application to Mo (100) , 1984 .