Lifshitz Transitions Induced by Temperature and Surface Doping in Type‐II Weyl Semimetal Candidate Td‐WTe2

Using high resolution angle‐resolved photoemission spectroscopy, we systematically investigate the electronic structure of Td‐WTe2, which has attracted substantial research attention due to its diverse and fascinating properties, especially the predicted type‐II topological Weyl semimetal (TWS) phase. The observed significant lattice contraction and the fact that our ARPES measurements are well reproduced by our ab initio calculations under reduced lattice constants support the theoretical prediction of a type‐II TWS phase in Td‐WTe2 at temperatures below 10 K. We also investigate the evolution of the electronic structure of Td‐WTe2 and realize two‐stage Lifshitz transitions induced by temperature regulation and surface modification, respectively. Our results not only shed light on the understanding of the electronic structure of Td‐WTe2, but also provide a promising method to manipulate the electronic structures and physical properties of the type‐II TWS Td‐XTe2.

[1]  Lin Zhao,et al.  Temperature-induced Lifshitz transition in topological insulator candidate HfTe5. , 2017, Science bulletin.

[2]  Kang L. Wang,et al.  Composition and temperature-dependent phase transition in miscible Mo1−xWxTe2 single crystals , 2017, Scientific Reports.

[3]  Yulin Chen,et al.  Quantum spin Hall state in monolayer 1T'-WTe2 , 2017, Nature Physics.

[4]  P. Canfield,et al.  Three-dimensionality of the bulk electronic structure in WTe2 , 2017, 1701.06667.

[5]  K. Ishizaka,et al.  Observation of spin-polarized bands and domain-dependent Fermi arcs in polar Weyl semimetal MoT e 2 , 2016, 1611.02168.

[6]  Zaiyao Fei,et al.  Edge conduction in monolayer WTe2 , 2016, Nature Physics.

[7]  X. Wan,et al.  Temperature effect on lattice and electronic structures of WTe2 from first-principles study , 2016, 1609.03716.

[8]  Yan-Feng Chen,et al.  Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe_{1.98} Crystals at the Quasiclassical Regime. , 2016, Physical review letters.

[9]  C. Felser,et al.  Signature of type-II Weyl semimetal phase in MoTe2 , 2016, Nature Communications.

[10]  Lin Zhao,et al.  Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5 , 2016, Nature Communications.

[11]  Zu-Yan Xu,et al.  Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2 , 2016 .

[12]  M. Vergniory,et al.  Surface Fermi arc connectivity in the type-II Weyl semimetal candidate WTe 2 , 2016, 1608.05633.

[13]  M. Chou,et al.  Spin texture in type-II Weyl semimetal WTe 2 , 2016, 1606.00085.

[14]  Timur K. Kim,et al.  Fermi Arcs and Their Topological Character in the Candidate Type-II Weyl Semimetal MoTe 2 , 2016, 1604.08228.

[15]  P. Canfield,et al.  Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2 , 2016, 1604.05176.

[16]  Lin Zhao,et al.  Spectroscopic Evidence of Type II Weyl Semimetal State in WTe2 , 2016, 1604.04218.

[17]  S. M. Walker,et al.  Surface states and bulk electronic structure in the candidate type-II Weyl semimetal WTe2 , 2016 .

[18]  S. M. Walker,et al.  Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WT e 2 , 2016, 1604.02411.

[19]  Z. J. Wang,et al.  Discovery of Weyl semimetal state violating Lorentz invariance in MoTe2 , 2016, 1604.02116.

[20]  Lin Zhao,et al.  Electronic Evidence for Type II Weyl Semimetal State in MoTe2 , 2016, 1604.01706.

[21]  W. Duan,et al.  Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.

[22]  Timothy M. McCormick,et al.  Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.

[23]  R. Cava,et al.  Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2 , 2016, Nature Communications.

[24]  M. Troyer,et al.  MoTe_{2}: A Type-II Weyl Topological Metal. , 2015, Physical review letters.

[25]  Su-Yang Xu,et al.  Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2 , 2015, Nature Communications.

[26]  C. Felser,et al.  Superconductivity in Weyl semimetal candidate MoTe2 , 2015, Nature Communications.

[27]  C. Felser,et al.  Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. , 2016, Nature materials.

[28]  M. Troyer,et al.  MoTe2: Weyl and Line Node Topological Metal , 2015 .

[29]  Yan Sun,et al.  Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP , 2015, 1508.06649.

[30]  C. Felser,et al.  Erratum: Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.

[31]  Su-Yang Xu,et al.  Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide , 2015, Nature Physics.

[32]  C. Felser,et al.  Prediction of Weyl semimetal in orthorhombicMoTe2 , 2015, Physical Review B.

[33]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[34]  Su-Yang Xu,et al.  A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class , 2015, Nature Communications.

[35]  R. Arita,et al.  Temperature-Induced Lifshitz Transition in WTe2. , 2015, Physical review letters.

[36]  X. Dai,et al.  Observation of Weyl nodes in TaAs , 2015, Nature Physics.

[37]  Timur K. Kim,et al.  Signature of Strong Spin-Orbital Coupling in the Large Nonsaturating Magnetoresistance Material WTe2. , 2015, Physical review letters.

[38]  Xianhui Chen Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.

[39]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[40]  Guanghou Wang,et al.  Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride , 2015, Nature Communications.

[41]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[42]  S. Murakami,et al.  Weyl Node and Spin Texture in Trigonal Tellurium and Selenium. , 2014, Physical review letters.

[43]  Junwei Liu,et al.  Quantum spin Hall effect in two-dimensional transition metal dichalcogenides , 2014, Science.

[44]  D. Vanderbilt,et al.  Weyl semimetals from noncentrosymmetric topological insulators , 2014, 1409.6399.

[45]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[46]  Arash A. Mostofi,et al.  An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..

[47]  R. Cava,et al.  Electronic structure basis for the extraordinary magnetoresistance in WTe2. , 2014, Physical review letters.

[48]  L. Fu,et al.  Quantum Spin Hall Effect and Topological Field Effect Transistor in Two-Dimensional Transition Metal Dichalcogenides , 2014, 1406.2749.

[49]  K. Landsteiner Anomalous transport of Weyl fermions in Weyl semimetals , 2013, 1306.4932.

[50]  J. Carbotte,et al.  Magneto-optical conductivity of Weyl semimetals , 2013, 1305.0275.

[51]  M Zahid Hasan,et al.  Topological electronic structure and Weyl semimetal in the TlBiSe2class of semiconductors , 2012, 1209.5896.

[52]  P. Hosur Friedel oscillations due to Fermi arcs in Weyl semimetals , 2012, 1208.0027.

[53]  Y. Tokura,et al.  Giant Rashba-type spin splitting in bulk BiTeI. , 2011, Nature materials.

[54]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[55]  Leon Balents,et al.  Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.

[56]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[57]  R. Hatch,et al.  Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3. , 2011, Physical review letters.

[58]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[59]  M. Sancho,et al.  Quick iterative scheme for the calculation of transfer matrices: application to Mo (100) , 1984 .