Single‐channel predefined‐time synchronisation of chaotic systems

[1]  S. Drakunov Sliding-mode observers based on equivalent control method , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[2]  Alexander G. Loukianov,et al.  A class of predefined-time stable dynamical systems , 2018 .

[3]  Alberto Tesi,et al.  Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems , 1992, Autom..

[4]  Er-Wei Bai,et al.  Synchronization of two Lorenz systems using active control , 1997 .

[5]  Yongjian Liu,et al.  Finite-Time Synchronization of Chaotic Systems with Different Dimension and Secure Communication , 2016 .

[6]  Alexander G. Loukianov,et al.  A discontinuous recurrent neural network with predefined time convergence for solution of linear programming , 2014, 2014 IEEE Symposium on Swarm Intelligence.

[7]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[8]  Alexander G. Loukianov,et al.  Predefined-time stability of dynamical systems with sliding modes , 2015, 2015 American Control Conference (ACC).

[9]  Gerardo Romero-Galván,et al.  On predefined-time synchronisation of chaotic systems , 2019, Chaos, Solitons & Fractals.

[10]  Alexander G. Loukianov,et al.  On optimal predefined‐time stabilization , 2017 .

[11]  Alain Arneodo,et al.  Transition to stochasticity for a class of forced oscillators , 1979 .

[12]  Sundarapandian Vaidyanathan,et al.  Sliding Mode Controller Design for the Global Chaos Synchronization of Coullet Systems , 2012 .

[13]  M. T. Yassen,et al.  Chaos synchronization between two different chaotic systems using active control , 2005 .

[14]  Xingyuan Wang,et al.  Finite-Time Chaos Synchronization of a New Hyperchaotic Lorenz System , 2013 .

[15]  Andrey Polyakov,et al.  Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems , 2012, IEEE Transactions on Automatic Control.

[16]  Qamar Din,et al.  Controlling Chaos and Neimark–Sacker Bifurcation in a Host–Parasitoid Model , 2019 .

[17]  Dennis S. Bernstein,et al.  Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..

[18]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[19]  V. Haimo Finite time controllers , 1986 .

[20]  Er-Wei Bai,et al.  Sequential synchronization of two Lorenz systems using active control , 2000 .

[21]  Alexander G. Loukianov,et al.  A Note on Predefined-Time Stability , 2018 .

[22]  Leonid M. Fridman,et al.  Stability notions and Lyapunov functions for sliding mode control systems , 2014, J. Frankl. Inst..

[23]  V. Utkin,et al.  Sliding mode control in dynamic systems , 1992 .

[24]  Shutang Liu,et al.  Linear Generalized Synchronization of Spatial Chaotic Systems , 2018 .

[25]  K. Rajagopal,et al.  Bifurcation, Chaos and its Control in A Fractional Order Power System Model with Uncertainties , 2018, Asian Journal of Control.

[26]  Chi-Ching Yang Robust Adaptive Terminal Sliding Mode Synchronized Control for a Class of Non‐Autonomous Chaotic Systems , 2013 .

[27]  Alain Arneodo,et al.  Possible new strange attractors with spiral structure , 1981 .

[28]  Xiaoyu Hu,et al.  Fast Fixed-Time Nonsingular Terminal Sliding Mode Control and Its Application to Chaos Suppression in Power System , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[29]  Hossein Kheiri,et al.  Exponential synchronization of chaotic system and application in secure communication , 2016 .

[30]  Julien Clinton Sprott,et al.  A New Chaotic Jerk Circuit , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[31]  Manoj Kumar Shukla,et al.  Control and Synchronization Of A Class Of Uncertain Fractional Order Chaotic Systems Via Adaptive Backstepping Control , 2018 .

[32]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[33]  Wang Shuo,et al.  Flight Tests of Autopilot Integrated with Fault-Tolerant Control of a Small Fixed-Wing UAV , 2016 .

[34]  Hassan K. Khalil,et al.  High-gain observers in nonlinear feedback control , 2009, 2009 IEEE International Conference on Control and Automation.