Implementing Connection Calculi for First-order Modal Logics

This paper presents an implementation of an automated theorem prover for first-order modal logic that works for the constant, cumulative, and varying domain of the modal logics D, T, S4, and S5. It is based on the connection calculus for classical logic and uses prefixes representing world paths and a prefix unification algorithm to capture the restrictions given by the Kripke semantics of the standard modal logics. This permits a modular and elegant treatment of the considered modal logics and yields an efficient implementation. Details of the calculus, the implementation and performance results on the QMLTP problem library are presented.

[1]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[2]  Lincoln A. Wallen,et al.  Automated deduction in nonclassical logics , 1990 .

[3]  Geoff Sutcliffe The TPTP Problem Library and Associated Infrastructure , 2009, Journal of Automated Reasoning.

[4]  Richard L. Mendelsohn,et al.  First-Order Modal Logic , 1998 .

[5]  Jens Otten,et al.  A Non-clausal Connection Calculus , 2011, TABLEAUX.

[6]  Jens Otten,et al.  Clausal Connection-Based Theorem Proving in Intuitionistic First-Order Logic , 2005, TABLEAUX.

[7]  Jens Otten,et al.  The QMLTP Problem Library for First-Order Modal Logics , 2012, IJCAR.

[8]  Ullrich Hustadt,et al.  MSPASS: Modal Reasoning by Translation and First-Order Resolution , 2000, TABLEAUX.

[9]  Reiner Hähnle,et al.  Tableaux and Related Methods , 2001, Handbook of Automated Reasoning.

[10]  Wolfgang Bibel,et al.  Automated Theorem Proving , 1987, Artificial Intelligence / Künstliche Intelligenz.

[11]  Bernhard Beckert,et al.  Free Variable Tableaux for Propositional Modal Logics , 1997, TABLEAUX.

[12]  Jens Otten,et al.  leanCoP 2.0and ileanCoP 1.2: High Performance Lean Theorem Proving in Classical and Intuitionistic Logic (System Descriptions) , 2008, IJCAR.

[13]  Lawrence C. Paulson,et al.  Quantified Multimodal Logics in Simple Type Theory , 2009, Logica Universalis.

[14]  Jens Otten Restricting backtracking in connection calculi , 2010, AI Commun..

[15]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[16]  Arild Waaler,et al.  Connections in Nonclassical Logics , 2001, Handbook of Automated Reasoning.

[17]  Lawrence C. Paulson,et al.  Multimodal and intuitionistic logics in simple type theory , 2010, Log. J. IGPL.