A Relaxation Scheme for the Nonlinear Schrödinger Equation

In this paper, we present a new numerical scheme for the nonlinear Schrodinger equation. This is a relaxation-type scheme that avoids solving for nonlinear systems and preserves density and energy. We give convergence results for the semidiscretized version of the scheme and perform several numerical experiments.

[1]  J. G. Verwer,et al.  Conservative and nonconservative schemes for the solution of the nonlinear Schroedinger equation , 1984 .

[2]  Christophe Besse,et al.  Schéma de relaxation pour l'équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson , 1998 .

[3]  Jean Bourgain,et al.  On nonlinear Schrödinger equations , 1998 .

[4]  Christophe Besse,et al.  Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[5]  Georgios Akrivis,et al.  Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods , 1997 .

[6]  Georgios Akrivis,et al.  On optimal order error estimates for the nonlinear Schro¨dinger equation , 1993 .

[7]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[8]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[9]  Georgios E. Zouraris,et al.  On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation , 2001 .

[10]  B. Herbst,et al.  Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .

[11]  Georgios Akrivis,et al.  Finite difference discretization of the cubic Schrödinger equation , 1993 .

[12]  Jean-Michel Ghidaglia,et al.  Nonelliptic Schrödinger equations , 1993 .

[13]  Z. Fei,et al.  Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .

[14]  Thierry Colin,et al.  Semidiscretization in time for nonlinear Schrödinger-waves equations , 1998 .

[15]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .