A Relaxation Scheme for the Nonlinear Schrödinger Equation
暂无分享,去创建一个
[1] J. G. Verwer,et al. Conservative and nonconservative schemes for the solution of the nonlinear Schroedinger equation , 1984 .
[2] Christophe Besse,et al. Schéma de relaxation pour l'équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson , 1998 .
[3] Jean Bourgain,et al. On nonlinear Schrödinger equations , 1998 .
[4] Christophe Besse,et al. Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..
[5] Georgios Akrivis,et al. Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods , 1997 .
[6] Georgios Akrivis,et al. On optimal order error estimates for the nonlinear Schro¨dinger equation , 1993 .
[7] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[8] Michel C. Delfour,et al. Finite-difference solutions of a non-linear Schrödinger equation , 1981 .
[9] Georgios E. Zouraris,et al. On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation , 2001 .
[10] B. Herbst,et al. Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .
[11] Georgios Akrivis,et al. Finite difference discretization of the cubic Schrödinger equation , 1993 .
[12] Jean-Michel Ghidaglia,et al. Nonelliptic Schrödinger equations , 1993 .
[13] Z. Fei,et al. Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .
[14] Thierry Colin,et al. Semidiscretization in time for nonlinear Schrödinger-waves equations , 1998 .
[15] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .