Parallel Solution of High Speed Low Order FDTD on 2D Free Space Wave Propagation

Finite Difference Time-Domain (FDTD) is one of the most widely used numerical method for solving electromagnetic problems. Solutions for these problems are computationally expensive in terms of processing time. Recently, we develop a method, High Speed Low Order FDTD (HSLO-FDTD) that is proven to solve one dimensional electro-magnetic problem with a reduction of 67% of processing time from the FDTD method. In this paper, we extend the method to solve two dimensional wave propagation problem. Since the problem is large, we develop the parallel version of HSLO-FDTD method on distributed memory multiprocessor machine using message-passing interface. We examine the parallelism efficiency of the algorithm by analyzing the execution time and speed-up.

[1]  Abdul Rahman Abdullah The four point explicit decoupled group (EDG) Method: a fast poisson solver , 1991, Int. J. Comput. Math..

[2]  Seyed H. Roosta Parallel processing and parallel algorithms - theory and computation , 1999 .

[3]  Muhammed Salamah,et al.  Parallel Implementation of the Wave-Equation Finite-Difference Time-Domain Method Using the Message Passing Interface , 2004, ISCIS.

[4]  Anton Cervin,et al.  Multirate Feedback Control Using the TinyRealTime Kernel , 2004 .

[5]  Allen Taflove,et al.  Predicting scattering of electromagnetic fields using FD-TD on a Connection Machine , 1989 .

[6]  Gao Benqing,et al.  A strategy for parallel implementation of the FDTD algorithm , 2002, 2002 3rd International Symposium on Electromagnetic Compatibility.

[7]  Xiaodong Zhang,et al.  Distributed computation of electromagnetic scattering problems using finite-difference time-domain decompositions , 1994, Proceedings of 3rd IEEE International Symposium on High Performance Distributed Computing.

[8]  M. Othman,et al.  An efficient four points modified explicit group poisson solver , 2000, Int. J. Comput. Math..

[9]  Mohamed Othman,et al.  The Half-Sweep Iterative Alternating Decomposition Explicit (HSIADE) Method for Diffusion Equation , 2004, CIS.

[10]  Abdul Rahman Abdullah,et al.  A Comparative Study of Parallel Strategies for the Solution of Elliptic Pde's , 1996, Parallel Algorithms Appl..

[11]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[12]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[13]  D. P. Rodohan,et al.  Parallel implementations of the finite difference time domain (FDTD) method , 1994 .

[14]  Yuxi Fu,et al.  Computational and Information Science, First International Symposium, CIS 2004, Shanghai, China, December 16-18, 2004, Proceedings , 2004, CIS.

[15]  A. Taflove,et al.  Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations , 1975 .

[16]  K. Mahdjoubi,et al.  A parallel FDTD algorithm using the MPI library , 2001 .

[17]  Mohamed Othman,et al.  Implementation of the Parallel Four Points Modified Explicit Group Iterative Algorithm on Shared Memory Parallel Computer , 2001, PaCT.

[18]  Azzam Ibrahim,et al.  Solving the two dimensional diffusion equation by the four point explicit decoupled group (edg) iterative method , 1995, Int. J. Comput. Math..

[19]  David J. Evans,et al.  Explicit De-coupled Group Iterative Methods and their Parallel Implementations , 1995, Parallel Algorithms Appl..

[20]  Mohamed Othman,et al.  Quarter-sweep iterative alternating decomposition explicit algorithm applied to diffusion equations , 2004, Int. J. Comput. Math..

[21]  Raj Mittra,et al.  Finite-difference time-domain (FDTD) analysis using distributed computing , 1994, IEEE Microwave and Guided Wave Letters.

[22]  David J. Evans,et al.  A Parallel four points modified explicit group algorithm on shared memory multiprocessors , 2004, Parallel Algorithms Appl..