Extremal Halin graphs with respect to the signless Laplacian spectra

A Halin graph G is a plane graph constructed as follows: Let T be a tree on at least 4 vertices. All vertices of T are either of degree 1, called leaves, or of degree at least 3. Let C be a cycle connecting the leaves of T in such a way that C forms the boundary of the unbounded face. Denote the set of all n -vertex Halin graphs by G n . In this article, sharp upper and lower bounds on the signless Laplacian indices of graphs among G n are determined and the extremal graphs are identified, respectively. As well graphs in G n having the second and third largest signless Laplacian indices are determined, respectively.

[1]  Peter Che Bor Lam,et al.  Edge-Face Total Chromatic Number of Halin Graphs , 2009, SIAM J. Discret. Math..

[2]  Murat Köksalan,et al.  Multiobjective traveling salesperson problem on Halin graphs , 2009, Eur. J. Oper. Res..

[3]  Miaolin Ye,et al.  Maximizing signless Laplacian or adjacency spectral radius of graphs subject to fixed connectivity , 2010 .

[4]  D. Cvetkovic,et al.  Towards a spectral theory of graphs based on the signless Laplacian, I , 2009 .

[5]  The binding number of Halin graphs , 1988 .

[6]  Francesco Belardo,et al.  On graphs whose signless Laplacian index does not exceed 4.5 , 2009 .

[7]  P. Hansen,et al.  Bounds and conjectures for the signless Laplacian index of graphs , 2009 .

[8]  Hikoe Enomoto,et al.  Plane Triangulations Without a Spanning Halin Subgraph: Counterexamples to the Lovász-Plummer Conjecture on Halin Graphs , 2015, SIAM J. Discret. Math..

[9]  Vladimir Nikiforov,et al.  A Spectral Erdős–Stone–Bollobás Theorem , 2007, Combinatorics, Probability and Computing.

[10]  Shuchao Li,et al.  On the signless Laplacian index of unicyclic graphs with fixed diameter , 2012 .

[11]  V. Nikiforov,et al.  Maxima of the Q-index: graphs with bounded clique number , 2013, 1308.1653.

[12]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[13]  Manu Basavaraju Acyclic Chromatic Index of Fully Subdivided Graphs and Halin Graphs , 2012, Discret. Math. Theor. Comput. Sci..

[14]  R. Halin,et al.  Über simpliziale Zerfällungen beliebiger (endlicher oder unendlicher) Graphen , 1964 .

[15]  Andrzej Szepietowski,et al.  The oriented chromatic number of Halin graphs , 2014, Inf. Process. Lett..

[16]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[17]  Muhuo Liu,et al.  The signless Laplacian spread , 2010 .

[18]  M. Fiedler Eigenvectors of acyclic matrices , 1975 .

[19]  W. Haemers,et al.  Which graphs are determined by their spectrum , 2003 .

[20]  Gérard Cornuéjols,et al.  Halin graphs and the travelling salesman problem , 1983, Math. Program..

[21]  Mark N. Ellingham,et al.  The Spectral Radius of Graphs on Surfaces , 2000, J. Comb. Theory, Ser. B.

[22]  Dragoš Cvetković,et al.  Towards a spectral theory of graphs based on the signless Laplacian, III , 2010 .

[23]  Ko-Wei Lih,et al.  The strong chromatic index of Halin graphs , 2012, Discret. Math..

[24]  Bo Zhou,et al.  Laplacian and signless Laplacian spectral radii of graphs with fixed domination number , 2013, 1310.7308.

[25]  Xiaodong Zhang,et al.  Sharp Bounds for the Signless Laplacian Spectral Radius in Terms of Clique Number , 2012, 1209.3214.

[26]  Pawel Winter Steiner problem in Halin networks , 1987, Discret. Appl. Math..

[27]  R. Brualdi Spectra of digraphs , 2010 .

[28]  D. Cvetkovic,et al.  Signless Laplacians of finite graphs , 2007 .

[29]  Wang Weifan,et al.  The 2-dipath chromatic number of Halin graphs , 2006 .

[30]  Xiao-Dong Zhang,et al.  Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees , 2005, Discret. Math..

[31]  T. D. Morley,et al.  Eigenvalues of the Laplacian of a graph , 1985 .

[32]  R. Halin On the Cycle Space of an Infinite 3-connected Graph , 2002 .

[33]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[34]  Shuchao Li,et al.  On the signless Laplacian index of cacti with a given number of pendant vertices , 2012 .

[35]  Shuchao Li,et al.  On the signless Laplacian spectra of k-trees , 2015, 1507.02536.

[36]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[37]  Maria Aguieiras A. de Freitas,et al.  Infinite families of Q-integral graphs , 2010 .

[38]  Yuan Hong,et al.  Some Relations Between the Eigenvalues of Adjacency, Laplacian and Signless Laplacian Matrix of a Graph , 2015, Graphs Comb..

[39]  P. Stadler Minimum cycle bases of Halin graphs , 2003 .

[40]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[41]  László Lovász,et al.  Lengths of cycles in halin graphs , 1985, J. Graph Theory.

[42]  Tudor Zamfirescu,et al.  Hamiltonicity of Cubic 3-Connected k-Halin Graphs , 2013, Electron. J. Comb..

[43]  Xiangwen Li Group Chromatic Number of Halin Graphs , 2015, Graphs Comb..

[44]  Éric Sopena,et al.  On the oriented chromatic number of Halin graphs , 2006, Inf. Process. Lett..