Using sound pulses to solve the crystal-harvesting bottleneck

A simple method for using sound pulses to harvest protein crystals from a commercially available crystallization plate is described. Crystals can be grown using conventional vapor-diffusion methods and then individually harvested or serially combined with a chemical library such as a fragment library.

[1]  K. Hasegawa,et al.  Structural Biology with Microfocus Beamlines , 2016 .

[2]  Oliver P. Ernst,et al.  Low-dose fixed-target serial synchrotron crystallography , 2017, Acta crystallographica. Section D, Structural biology.

[3]  Bernhard Rupp,et al.  Approaches to automated protein crystal harvesting. , 2014, Acta crystallographica. Section F, Structural biology communications.

[4]  Nicholas K. Sauter,et al.  Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array , 2015, Acta crystallographica. Section D, Biological crystallography.

[5]  Thomas S. Peat,et al.  Practical Aspects of the SAMPL Challenge: Providing an Extensive Experimental Data Set for the Modeling Community , 2009, Journal of biomolecular screening.

[6]  Martyn D Winn,et al.  Macromolecular TLS refinement in REFMAC at moderate resolutions. , 2003, Methods in enzymology.

[7]  W. DeGrado,et al.  High-density grids for efficient data collection from multiple crystals , 2016, Acta crystallographica. Section D, Structural biology.

[8]  N. Chayen,et al.  New directions in conventional methods of protein crystallization. , 2009, Progress in biophysics and molecular biology.

[9]  Garth J. Williams,et al.  Low-Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography , 2015 .

[10]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[11]  T. Sixma,et al.  First steps towards effective methods in exploiting high-throughput technologies for the determination of human protein structures of high biomedical value. , 2006, Acta crystallographica. Section D, Biological crystallography.

[12]  Elspeth F Garman,et al.  Experimental determination of the radiation dose limit for cryocooled protein crystals. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Vandenbroucke,et al.  Technologies That Enable Accurate and Precise Nano- to Milliliter-Scale Liquid Dispensing of Aqueous Reagents Using Acoustic Droplet Ejection , 2016, Journal of laboratory automation.

[14]  Sébastien Boutet,et al.  The New Macromolecular Femtosecond Crystallography (MFX) Instrument at LCLS , 2016, Synchrotron radiation news.

[15]  Alexander McPherson,et al.  Operator-assisted harvesting of protein crystals using a universal micromanipulation robot , 2007, Journal of applied crystallography.

[16]  R. Ellson,et al.  Gradient, Contact-Free Volume Transfers Minimize Compound Loss in Dose-Response Experiments , 2010, Journal of biomolecular screening.

[17]  K. Büssow,et al.  Current methods in structural proteomics and its applications in biological sciences , 2011, 3 Biotech.

[18]  Marcin Sikorski,et al.  Structure of photosystem II and substrate binding at room temperature , 2016, Nature.

[19]  Liang Yuan,et al.  Automatic Liquid Handling for Life Science , 2012, Journal of laboratory automation.

[20]  B. M. Santiago,et al.  A simple technique to reduce evaporation of crystallization droplets by using plate lids with apertures for adding liquids , 2014, Acta crystallographica. Section F, Structural biology communications.

[21]  R. Sweet,et al.  Hitting the target: fragment screening with acoustic in situ co-crystallization of proteins plus fragment libraries on pin-mounted data-collection micromeshes , 2014, Acta crystallographica. Section D, Biological crystallography.

[22]  Peter Murphy,et al.  Automated harvesting and processing of protein crystals through laser photoablation , 2016, Acta crystallographica. Section D, Structural biology.

[23]  J. Ng,et al.  Gentle, fast and effective crystal soaking by acoustic dispensing , 2016, bioRxiv.

[24]  R. Sweet,et al.  Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase , 2016, Journal of laboratory automation.

[25]  B. Matthews,et al.  Structure of thermolysin refined at 1.6 A resolution. , 1982, Journal of molecular biology.

[26]  R Diamond,et al.  Real-space refinement of the structure of hen egg-white lysozyme. , 1977, Journal of molecular biology.

[27]  Acoustically mounted microcrystals yield high-resolution X-ray structures. , 2011, Biochemistry.

[28]  F. Gil-Ortiz,et al.  Uridine as a new scavenger for synchrotron-based structural biology techniques. , 2017, Journal of synchrotron radiation.

[29]  Didier Nurizzo,et al.  RoboDiff: combining a sample changer and goniometer for highly automated macromolecular crystallography experiments , 2016, Acta crystallographica. Section D, Structural biology.

[30]  Jennifer R. Wolfley,et al.  A new view on crystal harvesting. , 2014, Journal of applied crystallography.

[31]  Gyorgy Snell,et al.  Automated sample mounting and alignment system for biological crystallography at a synchrotron source. , 2004, Structure.

[32]  Robert Viola,et al.  Automated robotic harvesting of protein crystals—addressing a critical bottleneck or instrumentation overkill? , 2007, Journal of Structural and Functional Genomics.

[33]  Yang Fang,et al.  Automated Particle Collection for Protein Crystal Harvesting , 2017, IEEE Robotics and Automation Letters.

[34]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[35]  C. David,et al.  A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering , 2015, Scientific Reports.

[36]  H. Chapman,et al.  Possibilities for serial femtosecond crystallography sample delivery at future light sourcesa) , 2015, Structural Dynamics.

[37]  Takashi Tomizaki,et al.  Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature , 2016, Scientific Reports.

[38]  A. Kuczewski,et al.  Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography. , 2016, Structure.

[39]  E. Garman,et al.  To scavenge or not to scavenge, that is STILL the question , 2012, Journal of synchrotron radiation.

[40]  Hsi-Wen Tung,et al.  Protein crystal harvesting using the RodBot: A wireless mobile microrobot , 2014 .

[41]  Florent Cipriani,et al.  CrystalDirect: a new method for automated crystal harvesting based on laser-induced photoablation of thin films. , 2012, Acta crystallographica. Section D, Biological crystallography.

[42]  Gwyndaf Evans,et al.  Application of in situ diffraction in high-throughput structure determination platforms. , 2015, Methods in molecular biology.

[43]  T. Magee Progress in discovery of small-molecule modulators of protein-protein interactions via fragment screening. , 2015, Bioorganic & medicinal chemistry letters.

[44]  G. Labesse,et al.  In-plate protein crystallization, in situ ligand soaking and X-ray diffraction. , 2011, Acta crystallographica. Section D, Biological crystallography.

[45]  Richard N. Ellson,et al.  Transfer of low nanoliter volumes between microplates using focused acoustics-automation considerations , 2003 .

[46]  A. Kuglstatter,et al.  Acoustic matrix microseeding: improving protein crystal growth with minimal chemical bias. , 2010, Acta crystallographica. Section D, Biological crystallography.

[47]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[48]  Robert M Sweet,et al.  High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density. , 2014, Journal of structural biology.

[49]  V S Lamzin,et al.  Automated refinement of protein models. , 1993, Acta crystallographica. Section D, Biological crystallography.

[50]  S. R. Wasserman,et al.  The Evolution of High-Throughput Macromolecular Crystallography at Synchrotrons , 2015 .

[51]  R. Sweet,et al.  Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening , 2015, Acta crystallographica. Section D, Biological crystallography.

[52]  Timothy McPhillips,et al.  New paradigm for macromolecular crystallography experiments at SSRL: automated crystal screening and remote data collection , 2008, Acta crystallographica. Section D, Biological crystallography.

[53]  Alexei S Soares,et al.  Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines. , 2013, Journal of synchrotron radiation.

[54]  Nobuhisa Watanabe,et al.  Semi‐automated protein crystal mounting device for the sulfur single‐wavelength anomalous diffraction method , 2010 .

[55]  Uwe Bergmann,et al.  Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers , 2017, Nature Methods.

[56]  Ramona Duman,et al.  Microcrystal manipulation with laser tweezers , 2008, Acta crystallographica. Section D, Biological crystallography.

[57]  V. Stojanoff,et al.  Anomalous Diffraction at Ultra-High Energy for Protein Crystallography , 2006 .

[58]  From screen to structure with a harvestable microfluidic device , 2011, Acta crystallographica. Section F, Structural biology and crystallization communications.

[59]  Gerhard Klebe,et al.  Fragment‐Based Lead Discovery: Screening and Optimizing Fragments for Thermolysin Inhibition , 2010, ChemMedChem.

[60]  Masaki Yamamoto,et al.  Micro-crystallography comes of age. , 2012, Current opinion in structural biology.

[61]  M. Ultsch,et al.  Developments in the Implementation of Acoustic Droplet Ejection for Protein Crystallography , 2016, Journal of laboratory automation.

[62]  A. Hudson,et al.  Bioactive Contaminants Leach from Disposable Laboratory Plasticware , 2008, Science.

[63]  R. Sweet,et al.  A Linear Relationship between Crystal Size and Fragment Binding Time Observed Crystallographically: Implications for Fragment Library Screening Using Acoustic Droplet Ejection , 2014, PloS one.

[64]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[65]  Peng Li,et al.  Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves. , 2015, Small.