Metallic nanostructures for light trapping in energy-harvesting devices

Solar energy is abundant and environmentally friendly. Light trapping in solar-energy-harvesting devices or structures is of critical importance. This article reviews light trapping with metallic nanostructures for thin film solar cells and selective solar absorbers. The metallic nanostructures can either be used in reducing material thickness and device cost or in improving light absorbance and thereby improving conversion efficiency. The metallic nanostructures can contribute to light trapping by scattering and increasing the path length of light, by generating strong electromagnetic field in the active layer, or by multiple reflections/absorptions. We have also discussed the adverse effect of metallic nanostructures and how to solve these problems and take full advantage of the light-trapping effect. In recent years, researchers have demonstrated a number of new schemes for enhancing the absorption of light in solar cells. Chuan Fei Guo and colleagues from the University of Houston in the USA and National Center for Nanoscience and Technology of China in Beijing have now reviewed the use of metallic nanostructures for trapping light in photovoltaic devices. In particular, the presence of metallic nanoparticles in a solar cell or a solar absorber can aid light absorption by inducing strong, local field-enhancement effects or coupling to resonant plasmon modes. Such particles can also promote scattering and thus increase path lengths for light within the device. Solar cells that utilize this approach are either more efficient or substantially thinner than those that do not, thus reducing material costs and creating the opportunity for ultrathin, flexible devices.

[1]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[2]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[3]  David R. Mills,et al.  New cermet film structures with much improved selectivity for solar thermal applications , 1992 .

[4]  M. Addonizio,et al.  Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature , 2010 .

[5]  Limei Lin,et al.  Colored solar selective absorbing coatings with metal Ti and dielectric AlN multilayer structure , 2013 .

[6]  K. H. Jolliffee Optical properties of thin solid films , 1954 .

[7]  David R. Mills,et al.  Very low‐emittance solar selective surfaces using new film structures , 1992 .

[8]  Yi Cui,et al.  A transparent electrode based on a metal nanotrough network. , 2013, Nature nanotechnology.

[9]  F. J. Rodríguez-Fortuño,et al.  Double-negative polarization-independent fishnet metamaterial in the visible spectrum. , 2009, Optics letters.

[10]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[11]  Gang Chen,et al.  High-performance flat-panel solar thermoelectric generators with high thermal concentration. , 2011, Nature materials.

[12]  Fei Huang,et al.  Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells , 2012 .

[13]  E. Yu,et al.  Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles , 2005 .

[14]  H. Atwater,et al.  Modeling light trapping in nanostructured solar cells. , 2011, ACS Nano.

[15]  Zhigang Suo,et al.  Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography , 2014, Nature Communications.

[16]  R. C. Tiberio,et al.  Infrared mesh filters fabricated by electron‐beam lithography , 1985 .

[17]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[18]  H. Barshilia,et al.  Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers , 2010 .

[19]  Z. Tang,et al.  Facile synthesis of Au@TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency , 2012 .

[20]  Saleh Khamlich,et al.  Optimization of AlxOy/Pt/AlxOy multilayer spectrally selective coatings for solar–thermal applications , 2012 .

[21]  Claudio G. Parazzoli,et al.  Origin of dissipative losses in negative index of refraction materials , 2003 .

[22]  Li Minhua,et al.  Transmission properties of composite metamaterials in free space , 2008, 2008 8th International Symposium on Antennas, Propagation and EM Theory.

[23]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[24]  H. Craighead,et al.  Optical properties of selectively absorbing Ni/Al2O3 composite films , 1977 .

[25]  Harish C. Barshilia,et al.  Optical properties and thermal stability of pulsed-sputter-deposited AlxOy/Al/AlxOy multilayer absorber coatings , 2009 .

[26]  Derek Abbott,et al.  Keeping the Energy Debate Clean: How Do We Supply the World's Energy Needs? , 2010, Proceedings of the IEEE.

[27]  A. Burger,et al.  Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes , 2007 .

[28]  Yaogen Shen,et al.  High performance W-AlN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering , 2004 .

[29]  C. Kennedy Review of Mid- to High-Temperature Solar Selective Absorber Materials , 2002 .

[30]  J. Talghader,et al.  Absorption to reflection transition in selective solar coatings. , 2012, Optics express.

[31]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[32]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[33]  P. Kamat,et al.  Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. , 2012, ACS nano.

[34]  Yi Zhang,et al.  Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. , 2012, Nano letters.

[35]  C. Lampert,et al.  Microstructure and optical properties of black chrome before and after exposure to high temperatures , 1979 .

[36]  L. N. Hadley,et al.  Reflection and Transmission Interference Filters Part I. Theory , 1947 .

[37]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[38]  Yoon-Chae Nah,et al.  Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles , 2008 .

[39]  John C. C. Fan,et al.  Selective black absorbers using rf‐sputtered Cr2O3/Cr cermet films , 1977 .

[40]  Carl Hägglund,et al.  Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons , 2008 .

[41]  J. Hupp,et al.  Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[42]  Jifeng Liu,et al.  High-performance solution-processed plasmonic Ni nanochain-Al2O3 selective solar thermal absorbers , 2012 .

[43]  P. Zhou,et al.  High solar absorption of a multilayered thin film structure. , 2007, Optics express.

[44]  Fan-Ching Chien,et al.  Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. , 2011, ACS nano.

[45]  E. Wäckelgård,et al.  Solution-chemical derived nickel-alumina coatings for thermal solar absorbers , 2003 .

[46]  Z. Suo,et al.  Compliant thin film patterns of stiff materials as platforms for stretchable electronics , 2005 .

[47]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[48]  Ulrich Wiesner,et al.  Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. , 2011, Nano letters.

[49]  E. Wäckelgård,et al.  Anti-reflection coatings for solution-chemically derived nickel-alumina solar absorbers , 2004 .

[50]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[51]  Shuang Zhang,et al.  Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. , 2005, Physical review letters.

[52]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[53]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[54]  B. Orel,et al.  Silicone-based thickness insensitive spectrally selective (TISS) paints as selective paint coatings for coloured solar absorbers (Part I) , 2007 .

[55]  Z. Ren,et al.  Conductive black silicon surface made by silver nanonetwork assisted etching. , 2013, Small.

[56]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[57]  Nicolas C. Pégard,et al.  Wrinkles and deep folds as photonic structures in photovoltaics , 2012, Nature Photonics.

[58]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[59]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[60]  Albert Polman,et al.  Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells , 2009 .

[61]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[62]  Willie J. Padilla,et al.  Electrically resonant terahertz metamaterials: Theoretical and experimental investigations , 2007 .

[63]  Stephen R. Forrest,et al.  Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters , 2004 .

[64]  K. R. Catchpolea,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[65]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[66]  A. Polman,et al.  Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles. , 2012, Optics express.

[67]  Harry A. Atwater,et al.  Plasmonic light trapping in thin-film Si solar cells , 2012 .

[68]  K. Jefimovs,et al.  Free-standing inductive grid filter for infrared radiation rejection , 2006 .

[69]  Manuel F. M. Costa,et al.  Spectrally selective composite coatings of Cr-Cr2O3 and Mo-Al2O3 for solar energy applications , 2001 .

[70]  Harry A Atwater,et al.  Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. , 2011, Nano letters.

[71]  Albert Polman,et al.  Tunable light trapping for solar cells using localized surface plasmons , 2009 .

[72]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[73]  Dennis G. Hall,et al.  Island size effects in nanoparticle-enhanced photodetectors , 1998 .

[74]  David R. Smith,et al.  Negative refractive index metamaterials , 2006 .

[75]  Z. Ren,et al.  Enhanced broad-band extraordinary optical transmission through subwavelength perforated metallic films on strongly polarizable substrates , 2013 .

[76]  V. Shalaev Optical negative-index metamaterials , 2007 .

[77]  U. Chettiar,et al.  Yellow-light negative-index metamaterials. , 2009, Optics letters.

[78]  Qian Liu,et al.  Path-guided wrinkling of nanoscale metal films. , 2012, Advanced materials.

[79]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[80]  Qi-Chu Zhang Stainless-steel-AlN cermet selective surfaces deposited by direct current magnetron sputtering technology , 1998 .

[81]  Albert Polman,et al.  Transparent conducting silver nanowire networks. , 2012, Nano letters.

[82]  A. Belcher,et al.  Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure. , 2011, ACS nano.

[83]  Kitt Reinhardt,et al.  Broadband light absorption enhancement in thin-film silicon solar cells. , 2010, Nano letters.

[84]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[85]  Federico Capasso,et al.  Nanometre optical coatings based on strong interference effects in highly absorbing media. , 2013, Nature materials.

[86]  H. Atwater,et al.  Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors , 2009 .

[87]  Cong Wang,et al.  Improvement of thermal stability in the solar selective absorbing Mo–Al2O3 coating , 2013 .

[88]  Gang Chen,et al.  Thermal Emission Control with One-Dimensional Metallodielectric Photonic Crystals , 2004 .

[89]  O Ok Park,et al.  Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. , 2011, Angewandte Chemie.

[90]  L. Hadley,et al.  Reflection and transmission interference filters; experimental, comparison with theory, results. , 1948, Journal of the Optical Society of America.

[91]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[92]  G. Mcdonald Spectral reflectance properties of black chrome for use as a solar selective coating , 1975 .

[93]  M. Green,et al.  Plasmonics for photovoltaic applications , 2010 .

[94]  Martin A. Green,et al.  Harnessing plasmonics for solar cells , 2012, Nature Photonics.

[95]  Qi-Chu Zhang Optimizing analysis of W-AlN cermet solar absorbing coatings , 2001 .

[96]  S. Ko,et al.  Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. , 2012, Nanoscale.

[97]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[98]  Harry A Atwater,et al.  Design Considerations for Plasmonic Photovoltaics , 2010, Advanced materials.