Automatic segmentation of diatom images for classification

A general framework for automatic segmentation of diatom images is presented. This segmentation is a critical first step in contour‐based methods for automatic identification of diatoms by computerized image analysis. We review existing results, adapt popular segmentation methods to this difficult problem, and finally develop a method that substantially improves existing results. This method is based on the watershed segmentation from mathematical morphology, and belongs to the class of hybrid segmentation techniques. The novelty of the method is the use of connected operators for the computation and selection of markers, a critical ingredient in the watershed method to avoid over‐segmentation. All methods considered were used to extract binary contours from a large database of diatom images, and the quality of the contours was evaluated both visually and based on identification performance. Microsc. Res. Tech. 65:72–85, 2004. © 2004 Wiley‐Liss, Inc.

[1]  Ronald Jones,et al.  Attribute Openings, Thinnings, and Granulometries , 1996, Comput. Vis. Image Underst..

[2]  Henk J. A. M. Heijmans Connected Morphological Operators for Binary Images , 1999, Comput. Vis. Image Underst..

[3]  Aggelos K. Katsaggelos,et al.  Hybrid image segmentation using watersheds and fast region merging , 1998, IEEE Trans. Image Process..

[4]  S. Beucher,et al.  Morphological segmentation , 1990, J. Vis. Commun. Image Represent..

[5]  Paul Jackway Morphological Multiscale Gradient Watershed Image Analysis 1..1 Morphological Scale-space , 1995 .

[6]  Larry S. Davis,et al.  A survey of edge detection techniques , 1975 .

[7]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  J. W. Modestino,et al.  Flat Zones Filtering, Connected Operators, and Filters by Reconstruction , 1995 .

[9]  Alexandre X. Falcão,et al.  The Ordered Queue and the Optimality of the Watershed Approaches , 2000, ISMM.

[10]  Jos B. T. M. Roerdink,et al.  Identification by mathematical morphology , 2002 .

[11]  Serge Beucher,et al.  Watershed, Hierarchical Segmentation and Waterfall Algorithm , 1994, ISMM.

[12]  H. Heijmans Morphological image operators , 1994 .

[13]  Josef Kittler,et al.  Threshold selection based on a simple image statistic , 1985, Comput. Vis. Graph. Image Process..

[14]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[15]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[16]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[17]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[18]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.

[20]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[22]  Philippe Salembier,et al.  Antiextensive connected operators for image and sequence processing , 1998, IEEE Trans. Image Process..

[23]  Laurent Najman,et al.  Watershed of a continuous function , 1994, Signal Process..

[24]  J. Fairfield,et al.  Toboggan contrast enhancement for contrast segmentation , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[25]  Michel Grimaud,et al.  New measure of contrast: the dynamics , 1992, Optics & Photonics.

[26]  Michael H. F. Wilkinson,et al.  Optimizing Edge Detectors for Robust Automatic Threshold Selection: Coping with Edge Curvature and Noise , 1998, Graph. Model. Image Process..

[27]  Linda G. Shapiro,et al.  Image Segmentation Techniques , 1984, Other Conferences.

[28]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[29]  Dorin Comaniciu,et al.  Robust analysis of feature spaces: color image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  G. Cristóbal,et al.  Automatic slide scanning , 2002 .

[31]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  T. W. Ridler,et al.  Picture thresholding using an iterative selection method. , 1978 .

[33]  Ronald Jones,et al.  Connected Filtering and Segmentation Using Component Trees , 1999, Comput. Vis. Image Underst..

[34]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[35]  Philippe Salembier,et al.  Connected operators and pyramids , 1993, Optics & Photonics.

[36]  Joachim Weickert,et al.  Efficient image segmentation using partial differential equations and morphology , 2001, Pattern Recognit..

[37]  H. D. Buf,et al.  Automatic diatom identification , 2002 .

[38]  Michael H. F. Wilkinson,et al.  A Comparison of Algorithms for Connected Set Openings and Closings , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Theodosios Pavlidis,et al.  Picture Segmentation by a Tree Traversal Algorithm , 1976, JACM.

[40]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[41]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .