Analysis of the Pythium ultimum transcriptome using Sanger and Pyrosequencing approaches

[1]  S. Kamoun,et al.  Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes , 2008, The Plant cell.

[2]  P. Wincker,et al.  Transcriptome of Aphanomyces euteiches: New Oomycete Putative Pathogenicity Factors and Metabolic Pathways , 2008, PloS one.

[3]  Seonghee Lee,et al.  Identification and characterization of simple sequence repeat markers for Pythium aphanidermatum, P. cryptoirregulare, and P. irregulare and the potential use in Pythium population genetics , 2008, Current Genetics.

[4]  G. Engler,et al.  Exploration of the late stages of the tomato-Phytophthora parasitica interactions through histological analysis and generation of expressed sequence tags. , 2007, The New phytologist.

[5]  Leighton Pritchard,et al.  A translocation signal for delivery of oomycete effector proteins into host plant cells , 2007, Nature.

[6]  M. Lascombe,et al.  Structure of sylvaticin, a new alpha-elicitin-like protein from Pythium sylvaticum. , 2007, Acta crystallographica. Section D, Biological crystallography.

[7]  S. Kamoun Groovy times: filamentous pathogen effectors revealed. , 2007, Current opinion in plant biology.

[8]  Brian M. Smith,et al.  Expressed sequence tags from phytophthora sojae reveal genes specific to development and infection. , 2007, Molecular plant-microbe interactions : MPMI.

[9]  Wei Zhu,et al.  The TIGR Plant Transcript Assemblies database , 2006, Nucleic Acids Res..

[10]  S. Kamoun,et al.  A Phytophthora infestans Cystatin-Like Protein Targets a Novel Tomato Papain-Like Apoplastic Protease1[W][OA] , 2006, Plant Physiology.

[11]  Laura Baxter,et al.  Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis , 2006, Science.

[12]  Hideki Takahashi,et al.  Novel elicitin-like proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet. , 2006, Molecular plant pathology.

[13]  S. Kamoun A catalogue of the effector secretome of plant pathogenic oomycetes. , 2006, Annual review of phytopathology.

[14]  A. Halpern,et al.  A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Karin Romisch Faculty Opinions recommendation of The malarial host-targeting signal is conserved in the Irish potato famine pathogen. , 2006 .

[16]  F. Govers,et al.  Ancient origin of elicitin gene clusters in Phytophthora genomes. , 2006, Molecular biology and evolution.

[17]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[18]  T. Torto-Alalibo,et al.  Expressed sequence tags from the oomycete fish pathogen Saprolegnia parasitica reveal putative virulence factors , 2005, BMC Microbiology.

[19]  J. Amselem,et al.  Gene identification in the oomycete pathogen Phytophthora parasitica during in vitro vegetative growth through expressed sequence tags. , 2005, Fungal genetics and biology : FG & B.

[20]  Sophien Kamoun,et al.  A Second Kazal-Like Protease Inhibitor from Phytophthora infestans Inhibits and Interacts with the Apoplastic Pathogenesis-Related Protease P69B of Tomato1 , 2005, Plant Physiology.

[21]  Rex A. Dwyer,et al.  Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. , 2005, Molecular plant-microbe interactions : MPMI.

[22]  C. Lévesque,et al.  Molecular phylogeny and taxonomy of the genus Pythium. , 2004, Mycological research.

[23]  T. Torto-Alalibo,et al.  A Kazal-like Extracellular Serine Protease Inhibitor from Phytophthora infestans Targets the Tomato Pathogenesis-related Protease P69B* , 2004, Journal of Biological Chemistry.

[24]  F. Govers,et al.  Oomycetes and fungi: similar weaponry to attack plants. , 2003, Trends in microbiology.

[25]  T. A. Torto,et al.  EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. , 2003, Genome research.

[26]  John Quackenbush,et al.  TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets , 2003, Bioinform..

[27]  R. Varshney,et al.  Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) , 2003, Theoretical and Applied Genetics.

[28]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[29]  Hui-Hsien Chou,et al.  DNA sequence quality trimming and vector removal , 2001, Bioinform..

[30]  A. Chenchik,et al.  Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. , 2001, BioTechniques.

[31]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[32]  B. Sobral,et al.  Comparative analysis of expressed sequences in Phytophthora sojae. , 2000, Plant physiology.

[33]  B. Sobral,et al.  Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. , 1999, Fungal genetics and biology : FG & B.

[34]  F. Martin,et al.  SOILBORNE PLANT DISEASES CAUSED BY PYTHIUM SPP: ECOLOGY, EPIDEMIOLOGY, AND PROSPECTS FOR BIOLOGICAL CONTROL , 1999 .

[35]  S. Warwick,et al.  Isozyme variation, morphology, and growth response to temperature in Pythium ultimum , 1996 .

[36]  Stagg Da,et al.  Genetic variation in homothallic and hyphal swelling isolates of Pythium ultimum var. ultimum and P. utlimum var. sporangiferum. , 1994 .

[37]  D. Barr,et al.  Pythium sp. "group G", a form of Pythium ultimum causing damping-off of safflower , 1992 .

[38]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[39]  J. Anderson,et al.  Pathogenicity of fungi isolated from field-collected larvae of the Western treehole mosquito, Aedes sierrensis (Diptera: Culicidae). , 1988, Journal of invertebrate pathology.

[40]  Baris E. Suzek,et al.  Databases and ontologies UniRef : comprehensive and non-redundant UniProt reference clusters , 2007 .

[41]  J. Beynon,et al.  Trafficking arms: oomycete effectors enter host plant cells. , 2006, Trends in microbiology.

[42]  A. Wasson,et al.  Genes expressed in zoospores of Phytophthora nicotianae , 2003, Molecular Genetics and Genomics.

[43]  L. Mendoza,et al.  Infections caused by the Oomycetous pathogen Pythium insidiosum , 1996 .

[44]  R. Larkin,et al.  Effects of infection by Pythium spp. on root system morphology of alfalfa seedlings , 1995 .

[45]  D. S. St. Clair,et al.  Genetic variation in homothallic and hyphal swelling isolates of Pythium ultimum var. ultimum and P. utlimum var. sporangiferum. , 1994, Molecular plant-microbe interactions : MPMI.

[46]  G. J. Gascho,et al.  Root diseases, populations of soil fungi, and yield decline in continuous double-crop corn. , 1990 .

[47]  A. J. Plaats-Niterink Monograph of the genus Pythium , 1981 .

[48]  R. Cook,et al.  Evidence for Pythium as a pathogen of direct-drilled wheat in the Pacific Northwest. , 1980 .