Heme uptake in bacterial pathogens.

[1]  L. Runyen-Janecky Role and regulation of heme iron acquisition in gram-negative pathogens , 2013, Front. Cell. Infect. Microbiol..

[2]  M. Ikeda-Saito,et al.  Structures of the Substrate-free and Product-bound Forms of HmuO, a Heme Oxygenase from Corynebacterium diphtheriae , 2013, The Journal of Biological Chemistry.

[3]  V. Truong-Le,et al.  Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms. , 2013, Current opinion in pharmacology.

[4]  M. Murphy,et al.  IruO Is a Reductase for Heme Degradation by IsdI and IsdG Proteins in Staphylococcus aureus* , 2013, The Journal of Biological Chemistry.

[5]  N. Chim,et al.  The Mycobacterium tuberculosis Secreted Protein Rv0203 Transfers Heme to Membrane Proteins MmpL3 and MmpL11* , 2013, The Journal of Biological Chemistry.

[6]  A. Wilks,et al.  The P. aeruginosa heme binding protein PhuS is a heme oxygenase titratable regulator of heme uptake. , 2013, ACS chemical biology.

[7]  E. Collins,et al.  Mutational Analysis of Hemoglobin Binding and Heme Utilization by a Bacterial Hemoglobin Receptor , 2013, Journal of bacteriology.

[8]  K. Tsumoto,et al.  Heme degradation by Staphylococcus aureus IsdG and IsdI liberates formaldehyde rather than carbon monoxide. , 2013, Biochemistry.

[9]  M. Rivera,et al.  The hemophore HasA from Yersinia pestis (HasAyp) coordinates hemin with a single residue, Tyr75, and with minimal conformational change. , 2013, Biochemistry.

[10]  M. Delepierre,et al.  1H, 13C and 15N resonance assignments of the periplasmic signalling domain of HasR, a TonB-dependent outer membrane heme transporter , 2012, Biomolecular NMR Assignments.

[11]  M. Bielecki,et al.  The Porphyromonas gingivalis HmuY haemophore binds gallium(iii), zinc(ii), cobalt(iii), manganese(iii), nickel(ii), and copper(ii) protoporphyrin IX but in a manner different to iron(iii) protoporphyrin IX. , 2013, Metallomics : integrated biometal science.

[12]  M. Delepierre,et al.  The Structure of HasB Reveals a New Class of TonB Protein Fold , 2013, PloS one.

[13]  Satoshi Takahashi,et al.  A New Way to Degrade Heme , 2013, The Journal of Biological Chemistry.

[14]  C. Goulding,et al.  The Near-iron Transporter (NEAT) Domains of the Anthrax Hemophore IsdX2 Require a Critical Glutamine to Extract Heme from Methemoglobin* , 2013, The Journal of Biological Chemistry.

[15]  K. Locher,et al.  X-ray structure of the Yersinia pestis heme transporter HmuUV , 2012, Nature Structural &Molecular Biology.

[16]  D. Gell,et al.  Staphylococcus aureus Uses a Novel Multidomain Receptor to Break Apart Human Hemoglobin and Steal Its Heme* , 2012, The Journal of Biological Chemistry.

[17]  S. Heilbronner,et al.  Iron-Regulated Surface Determinant (Isd) Proteins of Staphylococcus lugdunensis , 2012, Journal of bacteriology.

[18]  A. Maresso,et al.  Hal Is a Bacillus anthracis Heme Acquisition Protein , 2012, Journal of bacteriology.

[19]  P. Delepelaire,et al.  Haemophore functions revisited , 2012, Molecular microbiology.

[20]  M. Stillman,et al.  Heme binding to the IsdE(M78A; H229A) double mutant: challenging unidirectional heme transfer in the iron-regulated surface determinant protein heme transfer pathway of Staphylococcus aureus , 2012, JBIC Journal of Biological Inorganic Chemistry.

[21]  A. Lecroisey,et al.  Role of the Iron Axial Ligands of Heme Carrier HasA in Heme Uptake and Release* , 2012, The Journal of Biological Chemistry.

[22]  Mehul N Bhakta,et al.  Induced fit on heme binding to the Pseudomonas aeruginosa cytoplasmic protein (PhuS) drives interaction with heme oxygenase (HemO) , 2012, Proceedings of the National Academy of Sciences.

[23]  T. Olczak,et al.  Gallium(III), cobalt(III) and copper(II) protoporphyrin IX exhibit antimicrobial activity against Porphyromonas gingivalis by reducing planktonic and biofilm growth and invasion of host epithelial cells , 2012, Archives of Microbiology.

[24]  F. Murphy,et al.  Differential Function of Lip Residues in the Mechanism and Biology of an Anthrax Hemophore , 2012, PLoS pathogens.

[25]  Eric P. Skaar,et al.  A battle for iron: host sequestration and Staphylococcus aureus acquisition. , 2012, Microbes and infection.

[26]  C. Goulding,et al.  Characterization of heme ligation properties of Rv0203, a secreted heme binding protein involved in Mycobacterium tuberculosis heme uptake. , 2012, Biochemistry.

[27]  Eric P Skaar,et al.  Molecular mechanisms of Staphylococcus aureus iron acquisition. , 2011, Annual review of microbiology.

[28]  Eric P. Skaar,et al.  Structural Basis for Hemoglobin Capture by Staphylococcus aureus Cell-surface Protein, IsdH , 2011, The Journal of Biological Chemistry.

[29]  A. L. Arrieta,et al.  Unique Heme-Iron Coordination by the Hemoglobin Receptor IsdB of Staphylococcus aureus , 2011, Biochemistry.

[30]  Ann Smith,et al.  Haem release from haemopexin by HxuA allows Haemophilus influenzae to escape host nutritional immunity , 2011, Molecular microbiology.

[31]  Angelina Iniguez,et al.  Discovery and characterization of a unique mycobacterial heme acquisition system , 2011, Proceedings of the National Academy of Sciences.

[32]  D. Byrne,et al.  HmuY Haemophore and Gingipain Proteases Constitute a Unique Syntrophic System of Haem Acquisition by Porphyromonas gingivalis , 2011, PloS one.

[33]  M. Niederweis,et al.  Mycobacterium tuberculosis Can Utilize Heme as an Iron Source , 2011, Journal of bacteriology.

[34]  A. Maresso,et al.  Mechanisms of iron import in anthrax , 2011, BioMetals.

[35]  Eric P. Skaar,et al.  The IsdG‐family of haem oxygenases degrades haem to a novel chromophore , 2010, Molecular microbiology.

[36]  N. Chim,et al.  Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis. , 2010, Journal of molecular biology.

[37]  C. Elkins,et al.  An Immunogenic, Surface-Exposed Domain of Haemophilus ducreyi Outer Membrane Protein HgbA Is Involved in Hemoglobin Binding , 2009, Infection and Immunity.

[38]  T. Olczak,et al.  Unique Structure and Stability of HmuY, a Novel Heme-Binding Protein of Porphyromonas gingivalis , 2009, PLoS pathogens.

[39]  R. Clubb,et al.  Functionally Distinct NEAT (NEAr Transporter) Domains within the Staphylococcus aureus IsdH/HarA Protein Extract Heme from Methemoglobin* , 2009, Journal of Biological Chemistry.

[40]  D. Heinrichs,et al.  Demonstration of the Iron-regulated Surface Determinant (Isd) Heme Transfer Pathway in Staphylococcus aureus* , 2008, Journal of Biological Chemistry.

[41]  D. Heinrichs,et al.  Heme binding in the NEAT domains of IsdA and IsdC of Staphylococcus aureus. , 2008, Journal of inorganic biochemistry.

[42]  Eric P. Skaar,et al.  Staphylococcus aureus IsdB Is a Hemoglobin Receptor Required for Heme Iron Utilization , 2006, Journal of bacteriology.

[43]  T. Olczak,et al.  Identification of Amino Acid Residues Involved in Heme Binding and Hemoprotein Utilization in the Porphyromonas gingivalis Heme Receptor HmuR , 2006, Infection and Immunity.

[44]  N. Frankenberg‐Dinkel Bacterial heme oxygenases. , 2004, Antioxidants & redox signaling.

[45]  E. Nagy,et al.  Identification of a novel iron regulated staphylococcal surface protein with haptoglobin‐haemoglobin binding activity , 2003, Molecular microbiology.

[46]  E. Hansen,et al.  Binding of Heme-Hemopexin Complexes by Soluble HxuA Protein Allows Utilization of This Complexed Heme byHaemophilus influenzae , 1998, Infection and Immunity.

[47]  B. Masters,et al.  Immunochemical evidence for an association of heme oxygenase with the microsomal electron transport system. , 1972, The Journal of biological chemistry.

[48]  P. Whitby,et al.  The haem-haemopexin utilization gene cluster (hxuCBA) as a virulence factor of Haemophilus influenzae. , 2007, Microbiology.