Particle sedimentation using hybrid Lattice Boltzmann-immersed boundary method scheme

Abstract Particle collisions play a critical role in determining the fluid-particle interaction. Thus, particulate matters and their interaction within a flow need an accurate treatment through felicitous composite methods. Accordingly, we present a numerical simulation based on a combined Lattice Boltzmann Method (LBM), Immersed Boundary Method (IBM), and Hard Sphere Molecular Dynamics (HSMD) scheme, with applications. This simulation method aims to understand spherical point-particle sedimentation in an incompressible Newtonian fluid. A Stokes' drag model implements the hydrodynamic interaction using Ladd's LBM scheme and a momentum exchange based IBM. The HSMD evaluates the discrete particles' kinematics and trajectory. We simulate a 3D single particle settling case as a benchmark. The simulation result exhibits a close match between the terminal particle velocity and an analytical result; it reproduces the expected exponential behavior. Finally, a sedimentation case involving 7200 particles demonstrates the composite schemes' capability to solve the complex interactions. This article discusses the interesting observations and results.

[1]  R. D. Felice,et al.  The voidage function for fluid-particle interaction systems , 1994 .

[2]  Wei Ge,et al.  Lattice Boltzmann based discrete simulation for gas-solid fluidization , 2013, 1303.2653.

[3]  Numerical Investigation of “Frog-Leap” Mechanisms of Three Particles Aligned Moving in an Inclined Channel Flow , 2015 .

[4]  Jiyuan Tu,et al.  Inhalation and deposition of carbon and glass composite fibre in the respiratory airway , 2013 .

[5]  Jie Wu,et al.  A Coupled Immersed Boundary-Lattice Boltzmann Method and Its Simulation for Biomimetic Problems , 2015 .

[6]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[7]  J. Fröhlich,et al.  Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids , 2012, Journal of Fluid Mechanics.

[8]  F. Xavier Trias,et al.  PIBM: Particulate immersed boundary method for fluid–particle interaction problems , 2014, 1407.6704.

[9]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[10]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[11]  C. Baccigalupi,et al.  Gravitational wave astronomy: the current status , 2015, Science China Physics, Mechanics & Astronomy.

[12]  Hiroshi Yamaguchi,et al.  A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow , 2014, Comput. Math. Appl..

[13]  C. Shu,et al.  Simulation of incompressible viscous flows around moving objects by a variant of immersed boundary-Lattice Boltzmann method , 2009 .

[14]  Ali Mani,et al.  Accurate calculation of Stokes drag for point-particle tracking in two-way coupled flows , 2016, J. Comput. Phys..

[15]  Josué Sznitman,et al.  Direct numerical simulation of particle laden flow in a human airway bifurcation model , 2016 .

[16]  Tian Hao,et al.  Calculation of interparticle spacing in colloidal systems. , 2006, Journal of colloid and interface science.

[17]  Luoding Zhu,et al.  Numerical Study of Stability and Accuracy of the Immersed Boundary Method Coupled to the Lattice Boltzmann BGK Model , 2014 .

[18]  Anthony J. C. Ladd,et al.  Lattice-Boltzmann methods for suspensions of solid particles , 2015 .

[19]  Nicholas A. Battista,et al.  A Mathematical Model and MATLAB Code for Muscle-Fluid-Structure Simulations. , 2015, Integrative and comparative biology.

[20]  C. Shu,et al.  Simulation of three‐dimensional flows over moving objects by an improved immersed boundary–lattice Boltzmann method , 2012 .

[21]  J. Derksen,et al.  Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: effect of Stokes number on drag force , 2016, Journal of Fluid Mechanics.

[22]  Y. Feng,et al.  Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: Computational issues , 2007 .

[23]  Numerical simulation of particle sedimentation in 3D rectangular channel , 2011 .

[24]  C. Shu,et al.  Particulate Flow Simulation via a Boundary Condition-Enforced Immersed Boundary-Lattice Boltzmann Scheme , 2009 .

[25]  L. Fauci,et al.  A computational model of the collective fluid dynamics of motile micro-organisms , 2002, Journal of Fluid Mechanics.

[26]  Markus Uhlmann,et al.  The motion of a single heavy sphere in ambient fluid: A benchmark for interface-resolved particulate flow simulations with significant relative velocities , 2013, 1310.5358.

[27]  T. S. Lee,et al.  Particle Sedimentation in a Constricted Passage Using a Flexible Forcing IB-LBM Scheme , 2015 .

[28]  R. Rangel,et al.  Numerical investigation of particle–particle and particle–wall collisions in a viscous fluid , 2008, Journal of Fluid Mechanics.

[29]  F. Behrendt,et al.  Euler–Lagrange/DEM simulation of wood gasification in a bubbling fluidized bed reactor , 2009 .

[30]  Howard H. Hu,et al.  Direct numerical simulations of fluid-solid systems using the arbitrary Langrangian-Eulerian technique , 2001 .

[31]  J. Stockie,et al.  Numerical simulations of particle sedimentation using the immersed boundary method , 2013, 1304.0804.

[32]  S. Luding Introduction to discrete element methods , 2008 .

[33]  Aibing Yu,et al.  DEM/CFD-DEM Modelling of Non-spherical Particulate Systems: Theoretical Developments and Applications , 2016 .

[34]  Wei Ge,et al.  Direct numerical simulation of particle-fluid systems by combining time-driven hard-sphere model and lattice Boltzmann method , 2010 .

[35]  Yan Peng,et al.  A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows , 2006 .

[36]  J. Wu,et al.  An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows , 2010, J. Comput. Phys..

[37]  M. Uhlmann An immersed boundary method with direct forcing for the simulation of particulate flows , 2005, 1809.08170.

[38]  W. Breugem,et al.  Channel flow of rigid sphere suspensions : Particle dynamics in the inertial regime , 2015, 1504.04836.

[39]  S. Balachandar,et al.  Discrete lattice effect of various forcing methods of body force on immersed Boundary-Lattice Boltzmann method , 2013 .

[40]  Z. Feng,et al.  Proteus: a direct forcing method in the simulations of particulate flows , 2005 .

[41]  A. Ladd,et al.  Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Y. Feng,et al.  Coupled lattice Boltzmann and discrete element modelling of fluid-particle interaction problems , 2007 .

[43]  Yang Hu,et al.  An improved momentum exchanged-based immersed boundary-lattice Boltzmann method by using an iterative technique , 2014, Comput. Math. Appl..

[44]  David R. Owen,et al.  An efficient framework for fluid–structure interaction using the lattice Boltzmann method and immersed moving boundaries , 2011 .

[45]  Michel Y. Louge,et al.  Measurements of the collision properties of small spheres , 1994 .

[46]  P. Saffman,et al.  On the Settling Speed of Free and Fixed Suspensions , 1973 .

[47]  A. Oliva,et al.  Effect of collisions on the particle behavior in a turbulent square duct flow , 2015 .

[48]  Robert Dillon,et al.  A 3D Motile Rod-Shaped Monotrichous Bacterial Model , 2009, Bulletin of mathematical biology.

[49]  Thomas Heistracher,et al.  Local particle deposition patterns may play a key role in the development of lung cancer. , 2003, Journal of applied physiology.

[50]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[51]  E. Izard,et al.  Modelling the dynamics of a sphere approaching and bouncing on a wall in a viscous fluid , 2014, Journal of Fluid Mechanics.

[52]  F. X. Trias,et al.  Numerical investigation on the role of discrete element method in combined LBM–IBM–DEM modeling , 2014 .

[53]  Z. Feng,et al.  The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems , 2004 .

[54]  J. Wu,et al.  Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications , 2009 .

[55]  David R. Owen,et al.  Combined three‐dimensional lattice Boltzmann method and discrete element method for modelling fluid–particle interactions with experimental assessment , 2010 .

[56]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[57]  Kyung Chun Kim,et al.  Lattice Boltzmann simulation of the three-dimensional motions of particles with various density ratios in lid-driven cavity flow , 2015, Appl. Math. Comput..

[58]  Danesh K. Tafti,et al.  Evaluation of drag correlations using particle resolved simulations of spheres and ellipsoids in assembly , 2017 .

[59]  Johannes G.M. Kuerten,et al.  Point-Particle DNS and LES of Particle-Laden Turbulent flow - a state-of-the-art review , 2016, Flow, Turbulence and Combustion.

[60]  Anthony Wachs,et al.  Free falling and rising of spherical and angular particles , 2014 .

[61]  Neelesh A. Patankar,et al.  Lagrangian numerical simulation of particulate flows , 2001 .

[62]  K. Mahesh,et al.  Accounting for finite-size effects in simulations of disperse particle-laden flows , 2008 .

[63]  Jing Li,et al.  Simulating the interactions of two freely settling spherical particles in Newtonian fluid using lattice-Boltzmann method , 2015, Appl. Math. Comput..

[64]  M. Hatami,et al.  Transient vertically motion of a soluble particle in a Newtonian fluid media , 2014 .

[65]  H. Zhu,et al.  Effects of sediment physical properties on the phosphorus release in aquatic environment , 2015 .

[66]  M. Reggio,et al.  Equilibrium distributions for straight, curved, and immersed boundary conditions in the lattice Boltzmann method , 2014 .

[67]  J. Pinton,et al.  Velocity measurement of a settling sphere , 2000 .

[68]  Howard H. Hu Direct simulation of flows of solid-liquid mixtures , 1996 .