Geostatistical radar–raingauge merging: A novel method for the quantification of rain estimation accuracy

Abstract Compared to other estimation techniques, one advantage of geostatistical techniques is that they provide an index of the estimation accuracy of the variable of interest with the kriging estimation standard deviation (ESD). In the context of radar–raingauge quantitative precipitation estimation (QPE), we address in this article the question of how the kriging ESD can be transformed into a local spread of error by using the dependency of radar errors to the rain amount analyzed in previous work. The proposed approach is implemented for the most significant rain events observed in 2008 in the Cevennes-Vivarais region, France, by considering both the kriging with external drift (KED) and the ordinary kriging (OK) methods. A two-step procedure is implemented for estimating the rain estimation accuracy: (i) first kriging normalized ESDs are computed by using normalized variograms (sill equal to 1) to account for the observation system configuration and the spatial structure of the variable of interest (rainfall amount, residuals to the drift); (ii) based on the assumption of a linear relationship between the standard deviation and the mean of the variable of interest, a denormalization of the kriging ESDs is performed globally for a given rain event by using a cross-validation procedure. Despite the fact that the KED normalized ESDs are usually greater than the OK ones (due to an additional constraint in the kriging system and a weaker spatial structure of the residuals to the drift), the KED denormalized ESDs are generally smaller the OK ones, a result consistent with the better performance observed for the KED technique. The evolution of the mean and the standard deviation of the rainfall-scaled ESDs over a range of spatial (5–300 km 2 ) and temporal (1–6 h) scales demonstrates that there is clear added value of the radar with respect to the raingauge network for the shortest scales, which are those of interest for flash-flood prediction in the considered region.

[1]  Witold F. Krajewski,et al.  Cokriging radar‐rainfall and rain gage data , 1987 .

[2]  Alexis Berne,et al.  Toward an error model for radar quantitative precipitation estimation in the Cevennes-Vivarais region, France ERAD 2006 , 2006 .

[3]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[4]  Witold F. Krajewski,et al.  Conditional Bias in Radar Rainfall Estimation. , 2000 .

[5]  Witold F. Krajewski,et al.  Product‐error‐driven generator of probable rainfall conditioned on WSR‐88D precipitation estimates , 2009 .

[6]  Alexis Berne,et al.  Temporal and spatial resolution of rainfall measurements required for urban hydrology , 2004 .

[7]  G. Bastin,et al.  On the Accuracy of Areal Rainfall Estimation - a Case-study , 1987 .

[8]  P. D. Reffye,et al.  La théorie des variables régionalisées, ses applications possibles dans le domaine épidémiologique aux recherches agronomiques en particulier sur le palmier à huile et le cocotier , 1986 .

[9]  H. Andrieu,et al.  The Catastrophic Flash-Flood Event of 8–9 September 2002 in the Gard Region, France: A First Case Study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory , 2005 .

[10]  R. Olea Geostatistics for Natural Resources Evaluation By Pierre Goovaerts, Oxford University Press, Applied Geostatistics Series, 1997, 483 p., hardcover, $65 (U.S.), ISBN 0-19-511538-4 , 1999 .

[11]  Guy Delrieu,et al.  Rain Measurement by Raingage-Radar Combination: A Geostatistical Approach , 1988 .

[12]  G. Pegram,et al.  Combining radar and rain gauge rainfall estimates using conditional merging , 2005 .

[13]  B. Boudevillain,et al.  The Cévennes‐Vivarais Mediterranean Hydrometeorological Observatory database , 2011 .

[14]  C. Gueguen,et al.  The New French Operational Radar Rainfall Product. Part II: Validation , 2007 .

[15]  Dong-Jun Seo,et al.  Independent Assessment of Incremental Complexity in NWS Multisensor Precipitation Estimator Algorithms , 2013 .

[16]  Hans R. Künsch,et al.  Data Transformation and Uncertainty in Geostatistical Combination of Radar and Rain Gauges , 2012 .

[17]  G. Delrieu,et al.  Estimation de lames d'eau spatiales à l'aide de données de pluviomètres et de radar météorologique-application au pas de temps journalier dans la région de Montréal , 1988 .

[18]  Uwe Haberlandt,et al.  Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event , 2007 .

[19]  Emad Habib,et al.  Analysis of radar-rainfall error characteristics and implications for streamflow simulation uncertainty , 2008 .

[20]  P. Tabary,et al.  The New French Operational Radar Rainfall Product. Part I: Methodology , 2007 .

[21]  W. Krajewski,et al.  On the estimation of radar rainfall error variance , 1999 .

[22]  B. Boudevillain,et al.  Dependence of radar quantitative precipitation estimation error on the rain intensity in the Cévennes region, France , 2014 .

[23]  Benjamin Hofner,et al.  Generalized additive models for location, scale and shape for high dimensional data—a flexible approach based on boosting , 2012 .

[24]  J. Jaime Gómez-Hernández,et al.  A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data , 2009 .

[25]  Hervé Andrieu,et al.  Bollène-2002 Experiment: Radar Quantitative Precipitation Estimation in the Cévennes–Vivarais Region, France. , 2009 .

[26]  Emmanouil N. Anagnostou,et al.  Uncertainty Quantification of Mean-Areal Radar-Rainfall Estimates , 1999 .

[27]  Dong-Jun Seo,et al.  Real-time estimation of rainfall fields using radar rainfall and rain gage data , 1998 .

[28]  G. Villarini,et al.  Product-Error-Driven Uncertainty Model for Probabilistic Quantitative Precipitation Estimation with NEXRAD Data , 2007 .

[29]  Laurent Delobbe,et al.  Evaluation of radar-gauge merging methods for quantitative precipitation estimates , 2009 .