Uncertainty Inequalities for the Continuous Wavelet Transform

Uncertainty inequalities of Heisenberg-type are established for the continuous wavelet transform resting on classical Heisenberg and Heisenberg-von Keumann principles.

[1]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[2]  Leon Cohen,et al.  The scale representation , 1993, IEEE Trans. Signal Process..

[3]  A. Calderón Intermediate spaces and interpolation, the complex method , 1964 .

[4]  Harry Dym,et al.  Fourier series and integrals , 1972 .

[5]  Ph. Tchamitchian,et al.  Wavelets: Time-Frequency Methods and Phase Space , 1992 .

[6]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[7]  Dennis Gabor,et al.  Theory of communication , 1946 .

[8]  H. Weyl The Theory Of Groups And Quantum Mechanics , 1931 .

[9]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[10]  Matthias Holschneider,et al.  Wavelets - an analysis tool , 1995, Oxford mathematical monographs.

[11]  A. Grossmann,et al.  Transforms associated to square integrable group representations. I. General results , 1985 .

[12]  K. Chandrasekharan Classical Fourier Transforms , 1989 .

[13]  B. Logan The uncertainty principle in reconstructing functions from projections , 1975 .

[14]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[15]  A. Berthier,et al.  On support properties of Lp-functions and their Fourier transforms , 1977 .

[16]  P. Maass,et al.  The Affine uncertainty principle in one and two dimensions , 1995 .

[17]  John J. Benedetto,et al.  Uncertainty Principles for Time-Frequency Operators , 1992 .