Proteomics studies of traumatic brain injury.

Publisher Summary This chapter discusses the proteomics studies of traumatic brain injury. Traumatic brain injury (TBI) or traumatic head injury is characterized as a direct physical impact or trauma to the head causing brain injury. There is mechanical compression-induced direct tissue injury often associated with hemorrhage and contusion at the site of impact. The models of TBI include controlled cortical impact (CCI) model, a fluid percussion model and vertical weight drop models. The sample types that can be exploited for the proteomics analysis include brain tissues, cerebrospinal fluid (CSF), and blood (serum and plasma). The protein separation methods used for proteomic analysis are: (1) two-dimensional gel isoelectrofocusing/electrophoresis and (2) multidimensional liquid chromatography (LC). Proteomics approaches to identify and develop clinically useful biomarkers for brain injury from trauma, disease, or drugs involving protein separation by gels or LC, coupled with mass spectrometry, provide a potent and novel methodological array in detection of biomarkers of CNS injury either alone or in combination. The TBI proteomics core technologies will provide an integrative approach to genomic and proteomics information by developing a common portal architecture; the TBI proteomics portal.

[1]  D. Hochstrasser,et al.  Proteomics and its trends facing nature's complexity , 2002, Proteomics.

[2]  Angelika Görg,et al.  Two‐dimensional electrophoresis. The current state of two‐dimensional electrophoresis with immobilized pH gradients , 1988 .

[3]  Jeremy J. Flint,et al.  Accumulation of non‐erythroid αII‐spectrin and calpain‐cleaved αII‐spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats , 2001 .

[4]  A. Link 2-D proteome analysis protocols , 1998 .

[5]  V. Seifert,et al.  Serum markers of brain damage and outcome prediction in patients after severe head injury. , 1999, British journal of neurosurgery.

[6]  S. Gygi,et al.  Mass spectrometry and proteomics. , 2000, Current opinion in chemical biology.

[7]  J. Yates,et al.  Method to compare collision-induced dissociation spectra of peptides: potential for library searching and subtractive analysis. , 1998, Analytical chemistry.

[8]  E Gianazza,et al.  Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. , 1982, Journal of biochemical and biophysical methods.

[9]  S. Orencole,et al.  Array-based ELISAs for high-throughput analysis of human cytokines. , 2001, BioTechniques.

[10]  S. Hanash Disease proteomics : Proteomics , 2003 .

[11]  David C Schwartz,et al.  A superfamily of protein tags: ubiquitin, SUMO and related modifiers. , 2003, Trends in biochemical sciences.

[12]  The need for national centers for proteomics , 2002, Nature Biotechnology.

[13]  Bart Kosko,et al.  Fuzzy Cognitive Maps , 1986, Int. J. Man Mach. Stud..

[14]  S. Grant,et al.  Proteomics in Neuroscience: From Protein to Network , 2001, The Journal of Neuroscience.

[15]  Jennifer M. Campbell,et al.  Matrix‐assisted laser desorption/ionization‐tandem mass spectrometry with high resolution and sensitivity for identification and characterization of proteins , 2002, Proteomics.

[16]  Michael Hamacher,et al.  HBPP and the pursuit of standardisation , 2003, The Lancet Neurology.

[17]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[18]  B C Kline,et al.  Dual asymmetric PCR: one-step construction of synthetic genes. , 1992, BioTechniques.

[19]  M. Ünlü,et al.  Difference gel electrophoresis. A single gel method for detecting changes in protein extracts , 1997, Electrophoresis.

[20]  A. Sickmann,et al.  Identification of phosphorylation and acetylation sites in αA-crystallin of the eye lens (mus musculus) after two-dimensional gel electrophoresis , 2003, Analytical and bioanalytical chemistry.

[21]  Edward H. Coe,et al.  cMap: the comparative genetic map viewer , 2003, Bioinform..

[22]  P Mendes,et al.  Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. , 1997, Trends in biochemical sciences.

[23]  J. Yates,et al.  DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. , 2002, Journal of proteome research.

[24]  F. Tortella,et al.  Accumulation of Calpain and Caspase-3 Proteolytic Fragments of Brain-Derived αII-Spectrin in Cerebral Spinal Fluid after Middle Cerebral Artery Occlusion in Rats , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[25]  Wayne F. Patton,et al.  Detection technologies in proteome analysis. , 2002, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[26]  A. Görg,et al.  The current state of two‐dimensional electrophoresis with immobilized pH gradients , 2000, Electrophoresis.

[27]  Ronald L. Hayes,et al.  A controlled cortical impact model of traumatic brain injury in the rat , 1991, Journal of Neuroscience Methods.

[28]  J. Finnie,et al.  Animal models of traumatic brain injury: a review. , 2001, Australian veterinary journal.

[29]  Pedro Mendes,et al.  GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems , 1993, Comput. Appl. Biosci..

[30]  S. Grant,et al.  Proteomics of multiprotein complexes: answering fundamental questions in neuroscience. , 2001, Trends in biotechnology.

[31]  Cornelius T. Leondes Intelligent systems : technology and applications , 2003 .

[32]  James C. Bezdek,et al.  Pool2: a generic system for cognitive map development and decision analysis , 1989, IEEE Trans. Syst. Man Cybern..

[33]  H. Kitano,et al.  Computational systems biology , 2002, Nature.

[34]  Hongchi Shi,et al.  Integrating Adaptive and Intelligent Techniques into a Web-Based Environment for Active Learning , 2002 .

[35]  M C Kohn,et al.  A graph-theoretical analysis of metabolic regulation. , 1983, Journal of theoretical biology.

[36]  E. Müller,et al.  Resolution power of two‐dimensional electrophoresis and identification of proteins from gels , 1996, Electrophoresis.

[37]  P F Lemkin,et al.  The 2DWG meta‐database of two‐dimensional electrophoretic gel images on the Internet , 1997, Electrophoresis.

[38]  I-Min A Chen,et al.  An Overview of the Object-Protocol Model (OPM) and OPM Data Management Tools , 1995, Inf. Syst..

[39]  Ting Chen,et al.  A suffix tree approach to the interpretation of tandem mass spectra: applications to peptides of non-specific digestion and post-translational modifications , 2003, ECCB.

[40]  Andreas Wiesner,et al.  Detection of tumor markers with ProteinChip technology. , 2004, Current pharmaceutical biotechnology.

[41]  David Jordan,et al.  The Object Database Standard: ODMG 2.0 , 1997 .

[42]  Roland Somogyi,et al.  Modeling the complexity of genetic networks: Understanding multigenic and pleiotropic regulation , 1996, Complex..

[43]  Kathryn Saatman,et al.  Application of proteomics technology to the field of neurotrauma. , 2003, Journal of neurotrauma.

[44]  B. Romner,et al.  Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings. , 2000, Journal of neurotrauma.

[45]  Gert Lubec,et al.  Proteomics in brain research: potentials and limitations , 2003, Progress in Neurobiology.

[46]  G. Lubec,et al.  Differences in protein level between neonatal and adult brain , 2000, Electrophoresis.

[47]  Su-Shing Chen Digital Libraries : The Life Cycle of Information , 1998 .

[48]  P. Lemkin Comparing two‐dimensional electrophoretic gel images across the Internet , 1997, Electrophoresis.

[49]  S. Gygi,et al.  Proteomics: the move to mixtures. , 2001, Journal of mass spectrometry : JMS.

[50]  Joshua E. Elias,et al.  Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. , 2003, Journal of proteome research.

[51]  L. N. Kanal,et al.  Uncertainty in Artificial Intelligence 5 , 1990 .

[52]  Ronald J. Moore,et al.  Toward a Human Blood Serum Proteome , 2002, Molecular & Cellular Proteomics.

[53]  G. Lubec,et al.  Rat brain proteins: Two‐dimensional protein database and variations in the expression level , 1999, Electrophoresis.

[54]  J R Yates,et al.  Automated protein identification using microcolumn liquid chromatography-tandem mass spectrometry. , 1999, Methods in molecular biology.

[55]  Kaj Blennow,et al.  Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients , 2002, Neuroreport.

[56]  R. Wait,et al.  Fluorescence two‐dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli , 2002, Proteomics.

[57]  Richard D. Smith Probing proteomes—seeing the whole picture? , 2000, Nature Biotechnology.

[58]  D. Graham,et al.  Apoptosis after traumatic brain injury. , 2000, Journal of neurotrauma.

[59]  A. Manz,et al.  Micro total analysis systems. 1. Introduction, theory, and technology. , 2002, Analytical chemistry.

[60]  Su-Shing Chen,et al.  Knowledge discovery of gene functions and metabolic pathways , 2000, Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering.

[61]  Sam Hanash,et al.  HUPO Initiatives Relevant to Clinical Proteomics* , 2004, Molecular & Cellular Proteomics.

[62]  S. Gygi,et al.  Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[64]  Michael L. Mavrovouniotis,et al.  Petri Net Representations in Metabolic Pathways , 1993, ISMB.