Marginalized particle PHD filters for multiple object Bayesian filtering

The Probability Hypothesis Density (PHD) filter is a recent solution to the multi-target filtering problem. Because the PHD filter is not computable, several implementations have been proposed including the Gaussian Mixture (GM) approximations and Sequential Monte Carlo (SMC) methods. In this paper, we propose a marginalized particle PHD filter which improves the classical solutions when used in stochastic systems with partially linear substructure.

[1]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[2]  M. Vihola Rao-blackwellised particle filtering in random set multitarget tracking , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[4]  S. Godsill,et al.  Auxiliary Particle Implementation of the Probability Hypothesis Density Filter , 2007, 2007 5th International Symposium on Image and Signal Processing and Analysis.

[5]  Thomas Bo Schön,et al.  An explicit variance reduction expression for the Rao-Blackwellised particle filter , 2011 .

[6]  I. R. Goodman,et al.  Mathematics of Data Fusion , 1997 .

[7]  Jouko Lampinen,et al.  Rao-Blackwellized particle filter for multiple target tracking , 2007, Inf. Fusion.

[8]  Ronald P. S. Mahler,et al.  Particle-systems implementation of the PHD multitarget-tracking filter , 2003, SPIE Defense + Commercial Sensing.

[9]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[10]  N. Oudjane,et al.  Progressive correction for regularized particle filters , 2000, Proceedings of the Third International Conference on Information Fusion.

[11]  Paul Fearnhead,et al.  Computational methods for complex stochastic systems: a review of some alternatives to MCMC , 2008, Stat. Comput..

[12]  Mark R. Morelande A sequential Monte Carlo method for PHD approximation with conditionally linear/Gaussian models , 2010, 2010 13th International Conference on Information Fusion.

[13]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[14]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[15]  Mark R. Morelande,et al.  Radiation field estimation using a Gaussian mixture , 2009, 2009 12th International Conference on Information Fusion.

[16]  K. Punithakumar,et al.  Multiple-model probability hypothesis density filter for tracking maneuvering targets , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[17]  Simon J. Godsill,et al.  Gaussian Mixture implementations of Probability Hypothesis Density filters for non-linear dynamical models , 2008 .

[18]  Yohan Petetin,et al.  Optimal SIR algorithm vs. fully adapted auxiliary particle filter: a non asymptotic analysis , 2012, Statistics and Computing.

[19]  Ba-Ngu Vo,et al.  Gaussian Particle Implementations of Probability Hypothesis Density Filters , 2007, 2007 IEEE Aerospace Conference.

[20]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[21]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[22]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[23]  Syed Ahmed Pasha,et al.  A Gaussian Mixture PHD Filter for Jump Markov System Models , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[24]  Ba-Ngu Vo,et al.  On performance evaluation of multi-object filters , 2008, 2008 11th International Conference on Information Fusion.

[25]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[26]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[27]  Y. Bar-Shalom Tracking and data association , 1988 .

[28]  Daniel E. Clark,et al.  Convergence results for the particle PHD filter , 2006, IEEE Transactions on Signal Processing.

[29]  Yohan Petetin,et al.  Marginalized PHD Filters for multi-target filtering , 2012, 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA).

[30]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[31]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[32]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[33]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[34]  Olaf Wolkenhauer,et al.  Random-sets: theory and applications , 2001 .