Identification of hysteresis models using real-coded genetic algorithms

Abstract.Finding an accurate model to present the hysteresis nonlinearities behavior of the smart actuator has attracted the attention of the researchers in recent years, since an accurate model has an essential role in the position control application of these actuators. Different models have been developed to describe the hysteresis nonlinearities, the generalized Prandtl-Ishlinskii (GPI) model is one of the most popular used models. This model uses the play operators represented by the threshold values and weights integrated with the odd envelope functions to characterize the hysteresis nonlinearities of smart actuators. The contribution of this paper proposes three different approaches using the Real-Coded Genetic Algorithm (RCGA) for the parameters identification of the Generalized Prandtl-Ishlinskii (GPI) model. In Approach 1, the thresholds and the values of the weights are calculated based on the proposed formulas with the unknown parameters to be identified using RCGA. In Approach 2, the thresholds values are calculated based on the proposed formula with the unknown parameters to be identified using RCGA and the values of the weights are identified directly using RCGA. In Approach 3, the thresholds and the values of the weights are identified directly using RCGA. Also, RCGA was used to identify the values of the coefficients of the envelope functions for all approaches. All approaches are tested through four different examples. Two examples are simulated examples that have linear and tangent hyperbolic envelope functions. Moreover, the other two examples represent experimental data obtained for a piezoelectric actuator and a shape alloy memory (SMA) actuator. The simulation results are carried through by the statistical and convergence analysis of the proposed approaches. The comparison and analysis show that three different approaches can be employed for modeling hysteresis nonlinearities with minimum differences between them.

[1]  Dieter Stoeckel,et al.  Shape memory actuators for automotive applications , 1990 .

[2]  Ying-Shieh Kung,et al.  A comparison of fitness functions for the identification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm , 2006 .

[3]  Kui Yao,et al.  Particle swarm optimization based modeling and compensation of hysteresis of PZT micro-actuator used in high precision dual-stage servo system , 2014, 2014 IEEE International Conference on Mechatronics and Automation.

[4]  M. A. Janaideh,et al.  An inversion formula for a Prandtl–Ishlinskii operator with time dependent thresholds☆ , 2011 .

[5]  Li-Min Zhu,et al.  Modeling and compensating the dynamic hysteresis of piezoelectric actuators via a modified rate-dependent Prandtl-Ishlinskii model , 2015 .

[6]  W. Huang,et al.  Stimulus-responsive shape memory materials: A review , 2012 .

[7]  Y. Furuya,et al.  Shape memory actuators for robotic applications , 1991 .

[8]  Helen Lai Wa Chan,et al.  Piezoelectric cement-based 1-3 composites , 2005 .

[9]  Yi Yin,et al.  Preparation and characterization of unimorph actuators based on piezoelectric Pb(Zr0.52Ti0.48)O3 materials , 2011 .

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  Yu Wang,et al.  Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers , 2003 .

[12]  Branislav Borovac,et al.  Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators , 2011 .

[13]  Wenli Zhang,et al.  An integrated multilayer ceramic piezoelectric micropump for microfluidic systems , 2013 .

[14]  Yanling Tian,et al.  A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications , 2013, IEEE/ASME Transactions on Mechatronics.

[15]  Eleni Chatzi,et al.  Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty , 2010 .

[16]  Cees Bil,et al.  Wing morphing control with shape memory alloy actuators , 2013 .

[17]  Horn-Sen Tzou,et al.  Comparison of flexoelectric and piezoelectric dynamic signal responses on flexible rings , 2014 .

[18]  Xiaobo Tan,et al.  Optimal Compression of a Generalized Prandtl-Ishlinskii Operator in Hysteresis Modeling , 2013 .

[19]  Yonghong Tan,et al.  An inner product-based dynamic neural network hysteresis model for piezoceramic actuators , 2005 .

[20]  A. Visintin Differential models of hysteresis , 1994 .

[21]  Hao Wu,et al.  Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester , 2014 .

[22]  Yasubumi Furuya,et al.  Design and Material Evaluation of Shape Memory Composites , 1996 .

[23]  David W. L. Wang,et al.  Preisach model identification of a two-wire SMA actuator , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[24]  B Samali,et al.  Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. , 2007, ISA transactions.

[25]  Heng Wu,et al.  A generalized Prandtl-Ishlinskii model for characterizing the rate-independent and rate-dependent hysteresis of piezoelectric actuators. , 2016, The Review of scientific instruments.

[26]  Li-Min Zhu,et al.  Parameter identification of the generalized Prandtl–Ishlinskii model for piezoelectric actuators using modified particle swarm optimization , 2013 .

[27]  Mohammad Al Janaideh,et al.  A Generalized Prandtl-Ishlinskii Model for Characterizing Rate Dependent Hysteresis , 2007, 2007 IEEE International Conference on Control Applications.

[28]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[29]  Mohammad Mahdi Kheirikhah,et al.  A Review of Shape Memory Alloy Actuators in Robotics , 2010, RoboCup.

[30]  Chuan Tian,et al.  Energy harvesting from low frequency applications using piezoelectric materials , 2014 .

[31]  Ming H. Wu,et al.  INDUSTRIAL APPLICATIONS FOR SHAPE MEMORY ALLOYS , 2000 .

[32]  Changjiang Zhou,et al.  Acoustic emission source localization using coupled piezoelectric film strain sensors , 2014 .

[33]  A. Pelton,et al.  An overview of nitinol medical applications , 1999 .

[34]  Donald J. Leo,et al.  Vehicular applications of smart material systems , 1998, Smart Structures.

[35]  Hiroyuki Fujita,et al.  Micro actuators and their applications , 1998 .

[36]  Jun Zhang,et al.  Optimal compression of generalized Prandtl-Ishlinskii hysteresis models , 2015, Autom..

[37]  F. A. Guerra,et al.  Multiobjective Exponential Particle Swarm Optimization Approach Applied to Hysteresis Parameters Estimation , 2012, IEEE Transactions on Magnetics.

[38]  Amr A. Adly,et al.  Using neural networks in the identification of Preisach-type hysteresis models , 1998 .

[39]  Y. Cao,et al.  A Novel Discrete ARMA-Based Model for Piezoelectric Actuator Hysteresis , 2012, IEEE/ASME Transactions on Mechatronics.

[40]  Wenmei Huang,et al.  Hybrid genetic algorithms for parameter identification of a hysteresis model of magnetostrictive actuators , 2007, Neurocomputing.

[41]  Yuehong Yin,et al.  Sigmoid-based hysteresis modeling and high-speed tracking control of SMA-artificial muscle , 2013 .

[42]  Gangbing Song,et al.  A comprehensive model for piezoceramic actuators: modelling, validation and application , 2009 .

[43]  Kenji Uchino Piezoelectric ultrasonic motors: overview , 1998 .

[44]  Meiling Zhu,et al.  Plucked Piezoelectric Bimorphs for Energy Harvesting , 2013 .

[45]  John S. Baras,et al.  Adaptive identification and control of hysteresis in smart materials , 2005, IEEE Transactions on Automatic Control.

[46]  Yonghong Tan,et al.  Neural network based identification of Preisach-type hysteresis in piezoelectric actuator using hysteretic operator , 2006 .

[47]  L. Schetky Shape memory alloy applications in space systems , 1991 .

[48]  Krzysztof Chwastek,et al.  Identification of a hysteresis model parameters with genetic algorithms , 2006, Math. Comput. Simul..

[49]  Osamu Fukuda,et al.  Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films , 2006 .

[50]  L G Machado,et al.  Medical applications of shape memory alloys. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[51]  C. Su,et al.  Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator , 2009 .

[52]  Tien-Fu Lu,et al.  Adaptive identification of hysteresis and creep in piezoelectric stack actuators , 2010 .

[53]  Meiying Ye,et al.  Parameter identification of hysteresis model with improved particle swarm optimization , 2009, 2009 Chinese Control and Decision Conference.

[54]  J. G. Smits Piezoelectric micropump with three valves working peristaltically , 1990 .

[55]  Mohammad Al Janaideh,et al.  Modelling rate-dependent symmetric and asymmetric hysteresis loops of smart actuators , 2008 .

[56]  Ranjan Ganguli,et al.  Dynamic hysteresis of piezoceramic stack actuators used in helicopter vibration control: experiments and simulations , 2007 .

[57]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[58]  Chun-Yi Su,et al.  A generalized Prandtl–Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators , 2009 .

[59]  Gregory D. Buckner,et al.  Hysteretic neural network modeling of spring-coupled piezoelectric actuators , 2011 .

[60]  Diego Mantovani,et al.  Shape memory alloys: Properties and biomedical applications , 2000 .

[61]  M. Al Janaideh,et al.  Inverse Rate-Dependent Prandtl–Ishlinskii Model for Feedforward Compensation of Hysteresis in a Piezomicropositioning Actuator , 2013, IEEE/ASME Transactions on Mechatronics.

[62]  S. Herold,et al.  Adaptive Piezoelectric Absorber for Active Vibration Control , 2016 .

[63]  M. A. Janaideh,et al.  Prandtl–Ishlinskii hysteresis models for complex time dependent hysteresis nonlinearities , 2012 .

[64]  Marin Golub,et al.  On the recombination operator in the real-coded genetic algorithms , 2013, 2013 IEEE Congress on Evolutionary Computation.

[65]  Yu Xie,et al.  Parameter identification of hysteresis nonlinear dynamic model for piezoelectric positioning system based on the improved particle swarm optimization method , 2017 .

[66]  Xiaobo Tan,et al.  Modeling and inverse compensation of hysteresis in vanadium dioxide using an extended generalized Prandtl-Ishlinskii model , 2014 .

[67]  S. Alkoy,et al.  Piezoelectric Sensors and Sensor Materials , 1998 .

[68]  Harold Kahn,et al.  The TiNi shape-memory alloy and its applications for MEMS , 1998 .

[69]  M. Sreekumar,et al.  Critical review of current trends in shape memory alloy actuators for intelligent robots , 2007, Ind. Robot.

[70]  Dimitris C. Lagoudas,et al.  Aerospace applications of shape memory alloys , 2007 .