Identification of hysteresis models using real-coded genetic algorithms
暂无分享,去创建一个
Hussam J. Khasawneh | Hussam J. Khasawneh | Zaer S. Abo-Hammour | Mohammad I. Al Saaideh | Shaher M. Momani | S. Momani | Z. Abo-Hammour | Mohammad Al Saaideh
[1] Dieter Stoeckel,et al. Shape memory actuators for automotive applications , 1990 .
[2] Ying-Shieh Kung,et al. A comparison of fitness functions for the identification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm , 2006 .
[3] Kui Yao,et al. Particle swarm optimization based modeling and compensation of hysteresis of PZT micro-actuator used in high precision dual-stage servo system , 2014, 2014 IEEE International Conference on Mechatronics and Automation.
[4] M. A. Janaideh,et al. An inversion formula for a Prandtl–Ishlinskii operator with time dependent thresholds☆ , 2011 .
[5] Li-Min Zhu,et al. Modeling and compensating the dynamic hysteresis of piezoelectric actuators via a modified rate-dependent Prandtl-Ishlinskii model , 2015 .
[6] W. Huang,et al. Stimulus-responsive shape memory materials: A review , 2012 .
[7] Y. Furuya,et al. Shape memory actuators for robotic applications , 1991 .
[8] Helen Lai Wa Chan,et al. Piezoelectric cement-based 1-3 composites , 2005 .
[9] Yi Yin,et al. Preparation and characterization of unimorph actuators based on piezoelectric Pb(Zr0.52Ti0.48)O3 materials , 2011 .
[10] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[11] Yu Wang,et al. Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers , 2003 .
[12] Branislav Borovac,et al. Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators , 2011 .
[13] Wenli Zhang,et al. An integrated multilayer ceramic piezoelectric micropump for microfluidic systems , 2013 .
[14] Yanling Tian,et al. A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications , 2013, IEEE/ASME Transactions on Mechatronics.
[15] Eleni Chatzi,et al. Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty , 2010 .
[16] Cees Bil,et al. Wing morphing control with shape memory alloy actuators , 2013 .
[17] Horn-Sen Tzou,et al. Comparison of flexoelectric and piezoelectric dynamic signal responses on flexible rings , 2014 .
[18] Xiaobo Tan,et al. Optimal Compression of a Generalized Prandtl-Ishlinskii Operator in Hysteresis Modeling , 2013 .
[19] Yonghong Tan,et al. An inner product-based dynamic neural network hysteresis model for piezoceramic actuators , 2005 .
[20] A. Visintin. Differential models of hysteresis , 1994 .
[21] Hao Wu,et al. Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester , 2014 .
[22] Yasubumi Furuya,et al. Design and Material Evaluation of Shape Memory Composites , 1996 .
[23] David W. L. Wang,et al. Preisach model identification of a two-wire SMA actuator , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).
[24] B Samali,et al. Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. , 2007, ISA transactions.
[25] Heng Wu,et al. A generalized Prandtl-Ishlinskii model for characterizing the rate-independent and rate-dependent hysteresis of piezoelectric actuators. , 2016, The Review of scientific instruments.
[26] Li-Min Zhu,et al. Parameter identification of the generalized Prandtl–Ishlinskii model for piezoelectric actuators using modified particle swarm optimization , 2013 .
[27] Mohammad Al Janaideh,et al. A Generalized Prandtl-Ishlinskii Model for Characterizing Rate Dependent Hysteresis , 2007, 2007 IEEE International Conference on Control Applications.
[28] C. Su,et al. An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.
[29] Mohammad Mahdi Kheirikhah,et al. A Review of Shape Memory Alloy Actuators in Robotics , 2010, RoboCup.
[30] Chuan Tian,et al. Energy harvesting from low frequency applications using piezoelectric materials , 2014 .
[31] Ming H. Wu,et al. INDUSTRIAL APPLICATIONS FOR SHAPE MEMORY ALLOYS , 2000 .
[32] Changjiang Zhou,et al. Acoustic emission source localization using coupled piezoelectric film strain sensors , 2014 .
[33] A. Pelton,et al. An overview of nitinol medical applications , 1999 .
[34] Donald J. Leo,et al. Vehicular applications of smart material systems , 1998, Smart Structures.
[35] Hiroyuki Fujita,et al. Micro actuators and their applications , 1998 .
[36] Jun Zhang,et al. Optimal compression of generalized Prandtl-Ishlinskii hysteresis models , 2015, Autom..
[37] F. A. Guerra,et al. Multiobjective Exponential Particle Swarm Optimization Approach Applied to Hysteresis Parameters Estimation , 2012, IEEE Transactions on Magnetics.
[38] Amr A. Adly,et al. Using neural networks in the identification of Preisach-type hysteresis models , 1998 .
[39] Y. Cao,et al. A Novel Discrete ARMA-Based Model for Piezoelectric Actuator Hysteresis , 2012, IEEE/ASME Transactions on Mechatronics.
[40] Wenmei Huang,et al. Hybrid genetic algorithms for parameter identification of a hysteresis model of magnetostrictive actuators , 2007, Neurocomputing.
[41] Yuehong Yin,et al. Sigmoid-based hysteresis modeling and high-speed tracking control of SMA-artificial muscle , 2013 .
[42] Gangbing Song,et al. A comprehensive model for piezoceramic actuators: modelling, validation and application , 2009 .
[43] Kenji Uchino. Piezoelectric ultrasonic motors: overview , 1998 .
[44] Meiling Zhu,et al. Plucked Piezoelectric Bimorphs for Energy Harvesting , 2013 .
[45] John S. Baras,et al. Adaptive identification and control of hysteresis in smart materials , 2005, IEEE Transactions on Automatic Control.
[46] Yonghong Tan,et al. Neural network based identification of Preisach-type hysteresis in piezoelectric actuator using hysteretic operator , 2006 .
[47] L. Schetky. Shape memory alloy applications in space systems , 1991 .
[48] Krzysztof Chwastek,et al. Identification of a hysteresis model parameters with genetic algorithms , 2006, Math. Comput. Simul..
[49] Osamu Fukuda,et al. Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films , 2006 .
[50] L G Machado,et al. Medical applications of shape memory alloys. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.
[51] C. Su,et al. Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator , 2009 .
[52] Tien-Fu Lu,et al. Adaptive identification of hysteresis and creep in piezoelectric stack actuators , 2010 .
[53] Meiying Ye,et al. Parameter identification of hysteresis model with improved particle swarm optimization , 2009, 2009 Chinese Control and Decision Conference.
[54] J. G. Smits. Piezoelectric micropump with three valves working peristaltically , 1990 .
[55] Mohammad Al Janaideh,et al. Modelling rate-dependent symmetric and asymmetric hysteresis loops of smart actuators , 2008 .
[56] Ranjan Ganguli,et al. Dynamic hysteresis of piezoceramic stack actuators used in helicopter vibration control: experiments and simulations , 2007 .
[57] M. Brokate,et al. Hysteresis and Phase Transitions , 1996 .
[58] Chun-Yi Su,et al. A generalized Prandtl–Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators , 2009 .
[59] Gregory D. Buckner,et al. Hysteretic neural network modeling of spring-coupled piezoelectric actuators , 2011 .
[60] Diego Mantovani,et al. Shape memory alloys: Properties and biomedical applications , 2000 .
[61] M. Al Janaideh,et al. Inverse Rate-Dependent Prandtl–Ishlinskii Model for Feedforward Compensation of Hysteresis in a Piezomicropositioning Actuator , 2013, IEEE/ASME Transactions on Mechatronics.
[62] S. Herold,et al. Adaptive Piezoelectric Absorber for Active Vibration Control , 2016 .
[63] M. A. Janaideh,et al. Prandtl–Ishlinskii hysteresis models for complex time dependent hysteresis nonlinearities , 2012 .
[64] Marin Golub,et al. On the recombination operator in the real-coded genetic algorithms , 2013, 2013 IEEE Congress on Evolutionary Computation.
[65] Yu Xie,et al. Parameter identification of hysteresis nonlinear dynamic model for piezoelectric positioning system based on the improved particle swarm optimization method , 2017 .
[66] Xiaobo Tan,et al. Modeling and inverse compensation of hysteresis in vanadium dioxide using an extended generalized Prandtl-Ishlinskii model , 2014 .
[67] S. Alkoy,et al. Piezoelectric Sensors and Sensor Materials , 1998 .
[68] Harold Kahn,et al. The TiNi shape-memory alloy and its applications for MEMS , 1998 .
[69] M. Sreekumar,et al. Critical review of current trends in shape memory alloy actuators for intelligent robots , 2007, Ind. Robot.
[70] Dimitris C. Lagoudas,et al. Aerospace applications of shape memory alloys , 2007 .