Reconfigurable magnonics heats up

Coupling electromagnetic waves to mechanical waves has led to a remarkable miniaturization of wireless communication technologies. Now, spin waves could provide us with technologies that are small and reprogrammable.

[1]  M. Kostylev,et al.  Brillouin light scattering studies of planar metallic magnonic crystals , 2010, 1004.1881.

[2]  C. Elachi,et al.  Waves in active and passive periodic structures: A review , 1976, Proceedings of the IEEE.

[3]  M. Kostylev,et al.  Analysis of collective spin-wave modes at different points within the hysteresis loop of a one-dimensional magnonic crystal comprising alternative-width nanostripes , 2010 .

[4]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[5]  Kang L. Wang,et al.  Magnonic logic circuits , 2010 .

[6]  M. Krawczyk,et al.  Review and prospects of magnonic crystals and devices with reprogrammable band structure , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Germany,et al.  A spin-wave logic gate based on a width-modulated dynamic magnonic crystal , 2015, 1501.03486.

[8]  Erik H. Waller,et al.  Optically reconfigurable magnetic materials , 2015, Nature Physics.

[9]  G. Melkov,et al.  Magnetization Oscillations and Waves , 1996 .

[10]  T. Rasing,et al.  Ultrafast optical manipulation of magnetic order , 2010 .

[11]  B Bryant,et al.  Imaging of spin waves in atomically designed nanomagnets. , 2014, Nature materials.

[12]  Andrii V. Chumak,et al.  All-linear time reversal by a dynamic artificial crystal , 2010, Nature communications.

[13]  Thomas J. Meitzler,et al.  Conditions for the spin wave nonreciprocity in an array of dipolarly coupled magnetic nanopillars , 2013 .

[14]  Bernard Dieny,et al.  The 2014 Magnetism Roadmap , 2014 .

[15]  Marimuthu Palaniswami,et al.  Internet of Things (IoT): A vision, architectural elements, and future directions , 2012, Future Gener. Comput. Syst..

[16]  A. Adeyeye,et al.  Nanostructured magnonic crystals with size-tunable bandgaps. , 2010, ACS nano.

[17]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[18]  Y. Otani,et al.  Magnetic vortex dynamics in a two-dimensional square lattice of ferromagnetic nanodisks , 2004 .

[19]  G. Marconi Wireless telegraphic communication , 2002 .

[20]  M. Kostylev,et al.  Spin-wave logical gates , 2005 .

[21]  A. Serga,et al.  Magnon transistor for all-magnon data processing , 2014, Nature Communications.

[22]  R. Stamps,et al.  Artificial ferroic systems: novel functionality from structure, interactions and dynamics , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  C. S. Tsai,et al.  Ferromagnetic films with magnon bandgap periodic structures: Magnon crystals , 2003 .

[24]  M. Kostylev,et al.  Making a reconfigurable artificial crystal by ordering bistable magnetic nanowires. , 2010, Physical review letters.

[25]  H. Ulrichs,et al.  The building blocks of magnonics , 2011, 1101.0479.

[26]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[27]  R. Kryshtal’,et al.  Surface acoustic wave in yttrium iron garnet as tunable magnonic crystals for sensors and signal processing applications , 2012 .

[28]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[29]  H. Ulrichs,et al.  Photo-magnonics , 2012, 1208.5383.

[30]  V. V. Kruglyak,et al.  Magnonics: Experiment to prove the concept , 2006 .