A Dynamic BI–Orthogonal Field Equation Approach to Efficient Bayesian Inversion
暂无分享,去创建一个
[1] A. O'Hagan,et al. Bayesian calibration of computer models , 2001 .
[2] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[3] Piyush M. Tagade,et al. Inferencing Component Maps of Gas Turbine Engine Using Bayesian Framework , 2011 .
[4] N. Zabaras,et al. Stochastic inverse heat conduction using a spectral approach , 2004 .
[5] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .
[6] Dani Gamerman,et al. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 1997 .
[7] Han-Lim Choi,et al. A Generalized Polynomial Chaos-Based Method for Efficient Bayesian Calibration of Uncertain Computational Models , 2012, 1211.0158.
[8] George Em Karniadakis,et al. Predictability and uncertainty in CFD , 2003 .
[9] James O. Berger,et al. A Framework for Validation of Computer Models , 2007, Technometrics.
[10] Michael Goldstein,et al. Probabilistic Formulations for Transferring Inferences from Mathematical Models to Physical Systems , 2005, SIAM J. Sci. Comput..
[11] Laura Painton Swiler,et al. Calibration, validation, and sensitivity analysis: What's what , 2006, Reliab. Eng. Syst. Saf..
[12] N. Wiener,et al. Nonlinear Problems in Random Theory , 1964 .
[13] Pawel Wnuk,et al. Identification of parametric models with a priori knowledge of process properties , 2016, Int. J. Appl. Math. Comput. Sci..
[14] John Red-Horse,et al. Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .
[15] N. Wiener. The Homogeneous Chaos , 1938 .
[16] Anna Karczewska,et al. A finite element method for extended KdV equations , 2016, Int. J. Appl. Math. Comput. Sci..
[17] Habib N. Najm,et al. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..
[18] Curtis Smith,et al. Bayesian inference in probabilistic risk assessment - The current state of the art , 2009, Reliab. Eng. Syst. Saf..
[19] Belkacem Ould Bouamama,et al. Bayesian reliability models of Weibull systems: State of the art , 2012, Int. J. Appl. Math. Comput. Sci..
[20] Unmeel B. Mehta,et al. Guide to credible computer simulations of fluid flows , 1996 .
[21] Michael Dumbser,et al. On Source Terms and Boundary Conditions Using Arbitrary High Order Discontinuous Galerkin Schemes , 2007, Int. J. Appl. Math. Comput. Sci..
[22] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[23] Thomas Y. Hou,et al. A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations , 2013, J. Comput. Phys..
[24] T. A. Zang,et al. Uncertainty Propagation for a Turbulent, Compressible Nozzle Flow Using Stochastic Methods , 2004 .
[25] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[26] Renate Meyer,et al. Metropolis–Hastings algorithms with adaptive proposals , 2008, Stat. Comput..
[27] Kathleen V. Diegert,et al. Error and uncertainty in modeling and simulation , 2002, Reliab. Eng. Syst. Saf..
[28] Marcin Marek Kaminski,et al. Symbolic Computing in Probabilistic and Stochastic Analysis , 2015, Int. J. Appl. Math. Comput. Sci..
[29] Rui Paulo. Default priors for Gaussian processes , 2005 .
[30] Pol D. Spanos,et al. Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .
[31] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[32] Bruno Després,et al. Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..
[33] Gareth W. Peters. Markov Chain Monte Carlo: stochastic simulation for Bayesian inference (2nd edn). Dani Gamerman and Hedibert F. Lopes, Chapman & Hall/CRC, Boca Raton, FL, 2006. No. of pages: xvii +323. Price: $69.95. ISBN10: 1‐58488‐587‐4, ISBN13: 978‐1‐58488‐587‐0 , 2008 .
[34] A. OHagan,et al. Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..
[35] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[36] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[37] Han-Lim Choi,et al. An Efficient Bayesian Calibration Approach Using Dynamically Biorthogonal Field Equations , 2012 .
[38] A. M. Stuart,et al. Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.
[39] T. Sapsis,et al. Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty , 2012 .
[40] Andrew M. Stuart,et al. Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.
[41] N Oreskes,et al. Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences , 1994, Science.
[42] U. B. Mehta,et al. Some Aspects of Uncertainty in Computational Fluid Dynamics Results , 1991 .
[43] Dave Higdon,et al. Combining Field Data and Computer Simulations for Calibration and Prediction , 2005, SIAM J. Sci. Comput..
[44] A. Stuart,et al. Variational data assimilation using targetted random walks , 2012 .
[45] C. Schwab,et al. Sparse high order FEM for elliptic sPDEs , 2009 .
[46] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[47] Piyush M. Tagade,et al. Bayesian Framework for Calibration of Gas Turbine Simulator , 2009 .
[48] Thomas Y. Hou,et al. A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms , 2013, J. Comput. Phys..
[49] O. L. Maître,et al. Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .
[50] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[51] G. Roberts,et al. Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .
[52] J. Besag,et al. Bayesian Computation and Stochastic Systems , 1995 .
[53] D. Venturi. A fully symmetric nonlinear biorthogonal decomposition theory for random fields , 2011 .
[54] A. B. Bortz,et al. A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .
[55] Pierre F. J. Lermusiaux,et al. Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .