A Dynamic BI–Orthogonal Field Equation Approach to Efficient Bayesian Inversion

Abstract This paper proposes a novel computationally efficient stochastic spectral projection based approach to Bayesian inversion of a computer simulator with high dimensional parametric and model structure uncertainty. The proposed method is based on the decomposition of the solution into its mean and a random field using a generic Karhunen-Loève expansion. The random field is represented as a convolution of separable Hilbert spaces in stochastic and spatial dimensions that are spectrally represented using respective orthogonal bases. In particular, the present paper investigates generalized polynomial chaos bases for the stochastic dimension and eigenfunction bases for the spatial dimension. Dynamic orthogonality is used to derive closed-form equations for the time evolution of mean, spatial and the stochastic fields. The resultant system of equations consists of a partial differential equation (PDE) that defines the dynamic evolution of the mean, a set of PDEs to define the time evolution of eigenfunction bases, while a set of ordinary differential equations (ODEs) define dynamics of the stochastic field. This system of dynamic evolution equations efficiently propagates the prior parametric uncertainty to the system response. The resulting bi-orthogonal expansion of the system response is used to reformulate the Bayesian inference for efficient exploration of the posterior distribution. The efficacy of the proposed method is investigated for calibration of a 2D transient diffusion simulator with an uncertain source location and diffusivity. The computational efficiency of the method is demonstrated against a Monte Carlo method and a generalized polynomial chaos approach.

[1]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[2]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[3]  Piyush M. Tagade,et al.  Inferencing Component Maps of Gas Turbine Engine Using Bayesian Framework , 2011 .

[4]  N. Zabaras,et al.  Stochastic inverse heat conduction using a spectral approach , 2004 .

[5]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[6]  Dani Gamerman,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 1997 .

[7]  Han-Lim Choi,et al.  A Generalized Polynomial Chaos-Based Method for Efficient Bayesian Calibration of Uncertain Computational Models , 2012, 1211.0158.

[8]  George Em Karniadakis,et al.  Predictability and uncertainty in CFD , 2003 .

[9]  James O. Berger,et al.  A Framework for Validation of Computer Models , 2007, Technometrics.

[10]  Michael Goldstein,et al.  Probabilistic Formulations for Transferring Inferences from Mathematical Models to Physical Systems , 2005, SIAM J. Sci. Comput..

[11]  Laura Painton Swiler,et al.  Calibration, validation, and sensitivity analysis: What's what , 2006, Reliab. Eng. Syst. Saf..

[12]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[13]  Pawel Wnuk,et al.  Identification of parametric models with a priori knowledge of process properties , 2016, Int. J. Appl. Math. Comput. Sci..

[14]  John Red-Horse,et al.  Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .

[15]  N. Wiener The Homogeneous Chaos , 1938 .

[16]  Anna Karczewska,et al.  A finite element method for extended KdV equations , 2016, Int. J. Appl. Math. Comput. Sci..

[17]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[18]  Curtis Smith,et al.  Bayesian inference in probabilistic risk assessment - The current state of the art , 2009, Reliab. Eng. Syst. Saf..

[19]  Belkacem Ould Bouamama,et al.  Bayesian reliability models of Weibull systems: State of the art , 2012, Int. J. Appl. Math. Comput. Sci..

[20]  Unmeel B. Mehta,et al.  Guide to credible computer simulations of fluid flows , 1996 .

[21]  Michael Dumbser,et al.  On Source Terms and Boundary Conditions Using Arbitrary High Order Discontinuous Galerkin Schemes , 2007, Int. J. Appl. Math. Comput. Sci..

[22]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[23]  Thomas Y. Hou,et al.  A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations , 2013, J. Comput. Phys..

[24]  T. A. Zang,et al.  Uncertainty Propagation for a Turbulent, Compressible Nozzle Flow Using Stochastic Methods , 2004 .

[25]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[26]  Renate Meyer,et al.  Metropolis–Hastings algorithms with adaptive proposals , 2008, Stat. Comput..

[27]  Kathleen V. Diegert,et al.  Error and uncertainty in modeling and simulation , 2002, Reliab. Eng. Syst. Saf..

[28]  Marcin Marek Kaminski,et al.  Symbolic Computing in Probabilistic and Stochastic Analysis , 2015, Int. J. Appl. Math. Comput. Sci..

[29]  Rui Paulo Default priors for Gaussian processes , 2005 .

[30]  Pol D. Spanos,et al.  Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .

[31]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[32]  Bruno Després,et al.  Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..

[33]  Gareth W. Peters Markov Chain Monte Carlo: stochastic simulation for Bayesian inference (2nd edn). Dani Gamerman and Hedibert F. Lopes, Chapman & Hall/CRC, Boca Raton, FL, 2006. No. of pages: xvii +323. Price: $69.95. ISBN10: 1‐58488‐587‐4, ISBN13: 978‐1‐58488‐587‐0 , 2008 .

[34]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[35]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[36]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[37]  Han-Lim Choi,et al.  An Efficient Bayesian Calibration Approach Using Dynamically Biorthogonal Field Equations , 2012 .

[38]  A. M. Stuart,et al.  Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.

[39]  T. Sapsis,et al.  Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty , 2012 .

[40]  Andrew M. Stuart,et al.  Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.

[41]  N Oreskes,et al.  Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences , 1994, Science.

[42]  U. B. Mehta,et al.  Some Aspects of Uncertainty in Computational Fluid Dynamics Results , 1991 .

[43]  Dave Higdon,et al.  Combining Field Data and Computer Simulations for Calibration and Prediction , 2005, SIAM J. Sci. Comput..

[44]  A. Stuart,et al.  Variational data assimilation using targetted random walks , 2012 .

[45]  C. Schwab,et al.  Sparse high order FEM for elliptic sPDEs , 2009 .

[46]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[47]  Piyush M. Tagade,et al.  Bayesian Framework for Calibration of Gas Turbine Simulator , 2009 .

[48]  Thomas Y. Hou,et al.  A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms , 2013, J. Comput. Phys..

[49]  O. L. Maître,et al.  Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .

[50]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[51]  G. Roberts,et al.  Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .

[52]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[53]  D. Venturi A fully symmetric nonlinear biorthogonal decomposition theory for random fields , 2011 .

[54]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[55]  Pierre F. J. Lermusiaux,et al.  Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .