Computer Simulations to Explore Membrane Organization and Transport

Over the past half-century, molecular dynamics (MD) simulations have developed from a method for studying the dynamics of pure Lennard-Jones particles to a versatile methodology for studying a broad range of biological systems at the atomic resolution. Recent advances in computer hardware and atomistic simulation algorithms have tremendously increased the timescales accessible to MD simulation by several orders of magnitude from nanosecond timescales to microsecond timescales. The dynamic behaviors of many key biochemical processes, which are hardly observed experimentally, such as protein folding, drug binding, permeation or transport of substrates across cell membrane, could be fully recorded using MD simulations at very fine temporal and spatial resolutions. Membrane proteins account for 20–30% of open reading frames in most genomes and they are targets of over 50% of all modern medicinal drugs. Knowledge of the structure and dynamical behavior of membranes and membrane proteins can greatly enhance the chances for successful pharmaceutical, anesthetic and drug delivery agent developments. However, it remains a big challenge to determine structural information of membrane proteins in experiments compared with soluble proteins. Fortunately, computational approaches, especially MD simulations, can serve as suitable tools to solve this problem and connect the relationship between the membrane protein structure and its physiological functions. In this chapter, we will demonstrate the utility of various theoretical models to investigate membrane proteins.

[1]  Alexander D. MacKerell,et al.  CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides. , 2015, The journal of physical chemistry. B.

[2]  Jacek Korchowiec,et al.  Molecular hardness and softness parameters and their use in chemistry , 1988 .

[3]  Chris Baker Polarizable force fields for molecular dynamics simulations of biomolecules , 2015 .

[4]  Jeffery B. Klauda,et al.  Update of the cholesterol force field parameters in CHARMM. , 2012, The journal of physical chemistry. B.

[5]  S. Feller,et al.  Molecular dynamics simulations of lipid bilayers , 2000 .

[6]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[7]  Alexander D. MacKerell,et al.  Inclusion of many-body effects in the additive CHARMM protein CMAP potential results in enhanced cooperativity of α-helix and β-hairpin formation. , 2012, Biophysical journal.

[8]  Alexander D. MacKerell,et al.  Force Field for Peptides and Proteins based on the Classical Drude Oscillator. , 2013, Journal of chemical theory and computation.

[9]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[10]  Wei Huang,et al.  Reoptimized interaction parameters for the peptide‐backbone model compound N‐methylacetamide in the GROMOS force field: Influence on the folding properties of two beta‐peptides in methanol , 2012, J. Comput. Chem..

[11]  S. Kuyucak,et al.  Ab initio calculation of the potential of mean force for dissociation of aqueous Ca-Cl. , 2011, The Journal of chemical physics.

[12]  J. Konopka,et al.  A Microdomain Formed by the Extracellular Ends of the Transmembrane Domains Promotes Activation of the G Protein-Coupled α-Factor Receptor , 2004, Molecular and Cellular Biology.

[13]  A. Warshel,et al.  Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n‐Alkane Molecules , 1968 .

[14]  Roberto D. Lins,et al.  A new GROMOS force field for hexopyranose‐based carbohydrates , 2005, J. Comput. Chem..

[15]  Andreas Kukol,et al.  Lipid Models for United-Atom Molecular Dynamics Simulations of Proteins. , 2009, Journal of chemical theory and computation.

[16]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[17]  Xavier Periole,et al.  Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. , 2009, Journal of chemical theory and computation.

[18]  Alexander D. MacKerell,et al.  Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. , 2012, Journal of chemical theory and computation.

[19]  M S Sansom,et al.  Membrane simulations: bigger and better? , 2000, Current opinion in structural biology.

[20]  Nohad Gresh,et al.  Improved Formulas for the Calculation of the Electrostatic Contribution to the Intermolecular Interaction Energy from Multipolar Expansion of the Electronic Distribution. , 2003, The journal of physical chemistry. A.

[21]  Luis Cruz,et al.  Force-Field Induced Bias in the Structure of Aβ21-30: A Comparison of OPLS, AMBER, CHARMM, and GROMOS Force Fields , 2015, J. Chem. Inf. Model..

[22]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[23]  Riccardo Chelli,et al.  Electrical response in chemical potential equalization schemes , 1999 .

[24]  Nohad Gresh,et al.  General Model for Treating Short-Range Electrostatic Penetration in a Molecular Mechanics Force Field , 2015, Journal of chemical theory and computation.

[25]  Chris Oostenbrink,et al.  An improved nucleic acid parameter set for the GROMOS force field , 2005, J. Comput. Chem..

[26]  R. MacKinnon,et al.  Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel , 2011, Nature.

[27]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[28]  Qing Zhang,et al.  The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema , 2004, Nucleic Acids Res..

[29]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[30]  Amitabha Chattopadhyay,et al.  Membrane cholesterol in the function and organization of G-protein coupled receptors. , 2006, Sub-cellular biochemistry.

[31]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[32]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[33]  Alexander D. MacKerell,et al.  CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses. , 2009, Journal of chemical theory and computation.

[34]  J. Arreola,et al.  Calcium-activated chloride channels. , 2005, Annual review of physiology.

[35]  Peter G. Kusalik,et al.  The Spatial Structure in Liquid Water , 1994, Science.

[36]  D. H. Andrews The Relation Between the Raman Spectra and the Structure of Organic Molecules , 1930 .

[37]  Callum J. Dickson,et al.  GAFFlipid: a General Amber Force Field for the accurate molecular dynamics simulation of phospholipid , 2012 .

[38]  Brad A. Bauer,et al.  Water Permeation Through DMPC Lipid Bilayers using Polarizable Charge Equilibration Force Fields. , 2011, Chemical physics letters.

[39]  Karl-Heinz Ott,et al.  Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations , 1996, J. Comput. Chem..

[40]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[41]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[42]  S. Mitaku,et al.  Corrigendum to: Identification of G protein‐coupled receptor genes from the human genome sequence (FEBS 26131) , 2002 .

[43]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Kuo-Chen Chou,et al.  An Allosteric Mechanism Inferred from Molecular Dynamics Simulations on Phospholamban Pentamer in Lipid Membranes , 2011, PloS one.

[45]  Jan Kroon,et al.  An extension of the GROMOS force field for carbohydrates, resulting in improvement of the crystal structure determination of α-D-galactose , 1995 .

[46]  H. C. Hartzell,et al.  Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. , 2008, Physiological reviews.

[47]  Brad A. Bauer,et al.  Exploring ion permeation energetics in gramicidin A using polarizable charge equilibration force fields. , 2009, Journal of the American Chemical Society.

[48]  Lei Liu,et al.  Free energy calculations on the two drug binding sites in the M2 proton channel. , 2011, Journal of the American Chemical Society.

[49]  B. Roux,et al.  Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. , 2006, The journal of physical chemistry. B.

[50]  Richard W. Pastor,et al.  Molecular dynamics and Monte Carlo simulations of lipid bilayers , 1994 .

[51]  A. Warshel,et al.  Consistent Force Field Calculations. II. Crystal Structures, Sublimation Energies, Molecular and Lattice Vibrations, Molecular Conformations, and Enthalpies of Alkanes , 1970 .

[52]  D. Engelman Membranes are more mosaic than fluid , 2005, Nature.

[53]  I. Rodriguez,et al.  Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors , 2009, Nature.

[54]  Kim Taehoon,et al.  CHARMM-GUI: A graphical user interface for the CHARMM users , 2014 .

[55]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[56]  M. Karplus,et al.  Evaluation of comparative protein modeling by MODELLER , 1995, Proteins.

[57]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[58]  Victor H Rusu,et al.  GROMOS 53A6GLYC, an Improved GROMOS Force Field for Hexopyranose-Based Carbohydrates. , 2012, Journal of chemical theory and computation.

[59]  Burkhard Rost,et al.  Structure and selectivity in bestrophin ion channels , 2014, Science.

[60]  Zhong-Zhi Yang,et al.  Valence state parameters of all transition metal atoms in metalloproteins—development of ABEEMσπ fluctuating charge force field , 2014, J. Comput. Chem..

[61]  Wonpil Im CHARMM-GUI 10 Years for Biomolecular Modeling and Simulation , 2016 .

[62]  E. Tamm,et al.  Role of bestrophin-1 in store-operated calcium entry in retinal pigment epithelium , 2013, Pflügers Archiv - European Journal of Physiology.

[63]  Travis Harrison,et al.  Erythrocyte G Protein-Coupled Receptor Signaling in Malarial Infection , 2003, Science.

[64]  M. Cadene,et al.  X-ray structure of a voltage-dependent K+ channel , 2003, Nature.

[65]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[66]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .

[67]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard–Jones parameters , 1998 .

[68]  Alexander D. MacKerell,et al.  CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model , 2004, J. Comput. Chem..

[69]  Alexander D. MacKerell,et al.  A simple polarizable model of water based on classical Drude oscillators , 2003 .

[70]  Cui Liu,et al.  Development of a Polarizable Force Field Using Multiple Fluctuating Charges per Atom. , 2010, Journal of chemical theory and computation.

[71]  R. Hockney,et al.  Quiet high resolution computer models of a plasma , 1974 .

[72]  Benoît Roux,et al.  A polarizable force field of dipalmitoylphosphatidylcholine based on the classical Drude model for molecular dynamics simulations of lipids. , 2013, The journal of physical chemistry. B.

[73]  Brad A. Bauer,et al.  Recent applications and developments of charge equilibration force fields for modeling dynamical charges in classical molecular dynamics simulations , 2012, Theoretical Chemistry Accounts.

[74]  Klaus Schulten,et al.  Lipid bilayer pressure profiles and mechanosensitive channel gating. , 2004, Biophysical journal.

[75]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[76]  Weiliang Zhu,et al.  Velocity-scaling optimized replica exchange molecular dynamics of proteins in a hybrid explicit/implicit solvent. , 2011, The Journal of chemical physics.

[77]  Helgi I. Ingólfsson,et al.  Computational Lipidomics with insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. , 2015, Journal of chemical theory and computation.

[78]  Robert S. Mulliken,et al.  A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities , 1934 .

[79]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[80]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[81]  C. Wadelius,et al.  The mutation spectrum of the bestrophin protein – functional implications , 1999, Human Genetics.

[82]  Jan Kroon,et al.  Extension of the gromos force field for carbohydrates, resulting in improvement of the crystal structure determination of α‐D‐galactose , 2008 .

[83]  Alexander D. MacKerell,et al.  Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field , 2014, The journal of physical chemistry. B.

[84]  H. Vogel,et al.  Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. , 2007, The Biochemical journal.

[85]  Alexander D. MacKerell,et al.  Polarizable empirical force field for acyclic polyalcohols based on the classical Drude oscillator. , 2013, Biopolymers.

[86]  Helgi I Ingólfsson,et al.  CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field. , 2015, Journal of chemical theory and computation.

[87]  Arieh Warshel,et al.  Consistent force field for calculation of vibrational spectra and conformations of some amides and lactam rings , 1970 .

[88]  Alexander D. MacKerell,et al.  Polarizable Empirical Force Field for Hexopyranose Monosaccharides Based on the Classical Drude Oscillator , 2014, The journal of physical chemistry. B.

[89]  James Andrew McCammon,et al.  Molecular Dynamics Simulations with Interaction Potentials Including Polarization Development of a Noniterative Method and Application to Water , 1990 .

[90]  J. Nathans,et al.  The vitelliform macular dystrophy protein defines a new family of chloride channels , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[91]  K. Kunzelmann TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca(2+) and cell volume. , 2015, Trends in biochemical sciences.

[92]  Yuan-yuan Cui,et al.  Human Disease-causing Mutations Disrupt an N-C-terminal Interaction and Channel Function of Bestrophin 1* , 2009, The Journal of Biological Chemistry.

[93]  Sandeep Patel,et al.  Charge equilibration force fields for lipid environments: applications to fully hydrated DPPC bilayers and DMPC-embedded gramicidin A. , 2009, The journal of physical chemistry. B.

[94]  Pengyu Y. Ren,et al.  Consistent treatment of inter‐ and intramolecular polarization in molecular mechanics calculations , 2002, J. Comput. Chem..

[95]  Maria M. Reif,et al.  New Interaction Parameters for Charged Amino Acid Side Chains in the GROMOS Force Field. , 2012, Journal of chemical theory and computation.

[96]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[97]  Alexander D. MacKerell,et al.  CHARMM Additive All-Atom Force Field for Phosphate and Sulfate Linked to Carbohydrates. , 2012, Journal of chemical theory and computation.

[98]  S. Lifson,et al.  Consistent force field calculations on 2,5‐diketopiperazine and its 3.6‐dimethyl derivatives , 1971 .

[99]  Ruhong Zhou,et al.  Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model , 1999 .

[100]  M R G Taylor,et al.  Pharmacogenetics of the human beta-adrenergic receptors , 2007, The Pharmacogenomics Journal.

[101]  S. Jacobson,et al.  Missense mutations in a retinal pigment epithelium protein, bestrophin-1, cause retinitis pigmentosa. , 2009, American journal of human genetics.

[102]  C. Pérez,et al.  Parameterization and validation of Gromos force field to use in conformational analysis of epoxidic systems , 2006 .

[103]  A. Watts,et al.  Rhodopsin-lipid associations in bovine rod outer segment membranes. Identification of immobilized lipid by spin-labels. , 1979, Biochemistry.

[104]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[105]  O. Tapia,et al.  On the sensitivity of MD trajectories to changes in water‐protein interaction parameters: The potato carboxypeptidase inhibitor in water as a test case for the GROMOS force field , 1996, Proteins.

[106]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[107]  J. Drews Drug discovery: a historical perspective. , 2000, Science.

[108]  J. Forsman,et al.  Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol. , 2015, Journal of chemical theory and computation.

[109]  Jesse G. McDaniel,et al.  Next-Generation Force Fields from Symmetry-Adapted Perturbation Theory. , 2016, Annual review of physical chemistry.

[110]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[111]  B. Roux,et al.  Ion permeation through a narrow channel: using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields. , 2006, Biophysical journal.

[112]  D. Robinson A Polarizable Force-Field for Cholesterol and Sphingomyelin. , 2013, Journal of chemical theory and computation.

[113]  Philippe H. Hünenberger,et al.  A reoptimized GROMOS force field for hexopyranose‐based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers , 2011, J. Comput. Chem..

[114]  Steven J. Stuart,et al.  Potentials and Algorithms for Incorporating Polarizability in Computer Simulations , 2003 .

[115]  Sandeep Patel,et al.  Molecular dynamics simulations of a DMPC bilayer using nonadditive interaction models. , 2009, Biophysical journal.

[116]  Alexander D. MacKerell,et al.  CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. , 2010, The journal of physical chemistry. B.

[117]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[118]  Alexander D. MacKerell,et al.  Extension of the CHARMM general force field to sulfonyl‐containing compounds and its utility in biomolecular simulations , 2012, J. Comput. Chem..

[119]  D. Tieleman,et al.  Perspective on the Martini model. , 2013, Chemical Society reviews.

[120]  Dirk P. Kroese,et al.  Why the Monte Carlo method is so important today , 2014 .

[121]  Toby W Allen,et al.  On the thermodynamic stability of a charged arginine side chain in a transmembrane helix , 2007, Proceedings of the National Academy of Sciences.

[122]  Massimiliano Bonomi,et al.  PLUMED: A portable plugin for free-energy calculations with molecular dynamics , 2009, Comput. Phys. Commun..

[123]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[124]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[125]  T. Gudermann,et al.  Receptors and G proteins as primary components of transmembrane signal transduction , 1995, Journal of Molecular Medicine.

[126]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[127]  A. Watts,et al.  Lipid-lipid and lipid-protein interactions in chromaffin granule membranes. A spin label ESR study. , 1980, Biochimica et biophysica acta.

[128]  S. Rasmussen,et al.  Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor , 2012, Proceedings of the National Academy of Sciences.

[129]  Alexander D. MacKerell,et al.  Polarizable empirical force field for alkanes based on the classical Drude oscillator model. , 2005, The journal of physical chemistry. B.

[130]  S. Long,et al.  Structure and insights into the function of a Ca2+-activated Cl− channel , 2014, Nature.

[131]  S. Mitaku,et al.  Identification of G protein‐coupled receptor genes from the human genome sequence , 2002, FEBS letters.

[132]  Pedro E. M. Lopes,et al.  Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications , 2009, Theoretical chemistry accounts.

[133]  Benoît Roux,et al.  Perspectives on: Ion selectivity: Ion selectivity in channels and transporters , 2011 .

[134]  Wonpil Im,et al.  CHARMM-GUI: Brining Advanced Computational Techniques to Web Interface , 2010 .

[135]  Vadim Cherezov,et al.  A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. , 2008, Structure.

[136]  Alexander D. MacKerell,et al.  An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications , 2016, Chemical reviews.

[137]  Harry A. Stern,et al.  Fluctuating Charge, Polarizable Dipole, and Combined Models: Parameterization from ab Initio Quantum Chemistry , 1999 .

[138]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules J. Am. Chem. Soc. 1995, 117, 5179−5197 , 1996 .

[139]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[140]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[141]  Piotr Cieplak,et al.  Polarization effects in molecular mechanical force fields , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[142]  G. Milligan,et al.  Why are there so many adrenoceptor subtypes? , 1994, Biochemical pharmacology.

[143]  Alexander D. MacKerell,et al.  All‐atom polarizable force field for DNA based on the classical drude oscillator model , 2014, J. Comput. Chem..

[144]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[145]  Alexander D. MacKerell,et al.  Development and current status of the CHARMM force field for nucleic acids , 2000, Biopolymers.

[146]  A. Warshel Quantum Mechanical Consistent Force Field (QCFF/PI) Method: Calculations of Energies, Conformations and Vibronic Interactions of Ground and Excited States of Conjugated Molecules , 1973 .

[147]  W. V. Gunsteren,et al.  Validation of the 53A6 GROMOS force field , 2005, European Biophysics Journal.