Modelling heat transfer of carbon nanotubes

Modelling heat transfer of carbon nanotubes is important for the thermal management of nanotube-based composites and nanoelectronic devices. By using a finite element method for three-dimensional anisotropic heat transfer, we have simulated the heat conduction and temperature variations of a single nanotube, a nanotube array and a part of a nanotube-based composite surface with heat generation. The thermal conductivity used is obtained from the upscaled value from the molecular simulations or experiments. Simulations show that nanotube arrays have unique cooling characteristics due to their anisotropic thermal conductivity.

[1]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[2]  A. Rubio,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1999 .

[3]  Luc T. Wille,et al.  Elastic properties of single-walled carbon nanotubes in compression , 1997 .

[4]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[5]  P. Scharff,et al.  Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes , 2000 .

[6]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[7]  T. Halicioǧlu,et al.  Stress Calculations for Carbon Nanotubes , 1998 .

[8]  L. Wille,et al.  Atomistic and continuum studies of carbon nanotubes under pressure , 2002 .

[9]  Ted Belytschko,et al.  An atomistic-based finite deformation membrane for single layer crystalline films , 2002 .

[10]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[11]  M. Gregory,et al.  Equivalent-Continuum Modeling of Nano-Structured Materials , 2001 .

[12]  Boris I. Yakobson,et al.  High strain rate fracture and C-chain unraveling in carbon nanotubes , 1997 .

[13]  Shigeo Maruyama,et al.  A molecular dynamics simulation of heat conduction in finite length SWNTs , 2002 .

[14]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[15]  Sanjay Govindjee,et al.  On the use of continuum mechanics to estimate the properties of nanotubes , 1999 .

[16]  Yang Wang,et al.  Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes , 2002, Microscopy and Microanalysis.

[17]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[18]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[19]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[20]  P. Bernier,et al.  Elastic and mechanical properties of carbon nanotubes , 1999 .

[21]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[22]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[23]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[24]  M. Balkanski,et al.  Elastic properties of crystals of single-walled carbon nanotubes , 2000 .

[25]  J. Altenbach Zienkiewicz, O. C., The Finite Element Method. 3. Edition. London. McGraw‐Hill Book Company (UK) Limited. 1977. XV, 787 S. , 1980 .

[26]  B. T. Kelly,et al.  Physics of Graphite , 1981 .

[27]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[28]  H. Lüth,et al.  Fine structure of photoresponse spectra in a double-barrier resonant tunnelling diode , 2000 .

[29]  Donald R Paul,et al.  Rheological behavior of multiwalled carbon nanotube/polycarbonate composites , 2002 .

[30]  Paul Geerlings,et al.  Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene , 2000 .

[31]  Rodney S. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .

[32]  Q. Xue Model for effective thermal conductivity of nanofluids , 2003 .

[33]  Li Shi,et al.  Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes , 2003 .

[34]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[35]  C. Nan,et al.  A simple model for thermal conductivity of carbon nanotube-based composites , 2003 .

[36]  Mica Grujicic,et al.  Optimization of the chemical vapor deposition process for carbon nanotubes fabrication , 2002 .

[37]  N. Aluru,et al.  Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches , 2002 .

[38]  R. Byron Pipes,et al.  Helical carbon nanotube arrays: mechanical properties , 2002 .

[39]  Yijun Liu,et al.  Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element , 2003 .

[40]  P. Hubert,et al.  Helical carbon nanotube arrays: thermal expansion , 2002 .

[41]  Y. Ochiai,et al.  Conduction carriers in multi-walled carbon nanotubes , 2003 .

[42]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .