THE MEANING OF MARKET EFFICIENCY
暂无分享,去创建一个
[1] M. Yor,et al. Equivalent and absolutely continuous measure changes for jump-diffusion processes , 2005, math/0508450.
[2] J. Jacod. Calcul stochastique et problèmes de martingales , 1979 .
[3] Jia-An Yan. A numeraire-free and original probability based framework for financial markets , 2003, math/0305017.
[4] E. Fama. EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .
[5] M. C. Jensen. Some Anomalous Evidence Regarding Market Efficiency , 1978 .
[6] Philip Protter,et al. STRUCTURAL VERSUS REDUCED FORM MODELS: A NEW INFORMATION BASED PERSPECTIVE , 2004 .
[7] S. Shreve,et al. Methods of Mathematical Finance , 2010 .
[8] D. Duffie. Dynamic Asset Pricing Theory , 1992 .
[9] R. Dana. Existence, uniqueness and determinacy of Arrow–Debreu equilibria in finance models , 1993 .
[10] E. Fama. Market Efficiency, Long-Term Returns, and Behavioral Finance , 1997 .
[11] Robert J. Elliott,et al. On Models of Default Risk , 2000 .
[12] E. Fama,et al. Efficient Capital Markets : II , 2007 .
[13] F. Delbaen,et al. Arbitrage possibilities in Bessel processes and their relations to local martingales , 1995 .
[14] Robert C. Dalang,et al. Equivalent martingale measures and no-arbitrage in stochastic securities market models , 1990 .
[15] P. Meyer,et al. La mesure de H. Föllmer en théorie des surmartingales , 1972 .
[16] Rose Anne Dana. Existence and Uniqueness of Equilibria When Preferences Are Additively Separable , 1993 .
[17] Rose-Anne Dana,et al. On the Existence of an Arrow-Radner Equilibrium in the Case of Complete Markets. A Remark , 1992, Math. Oper. Res..
[18] F. Delbaen,et al. A general version of the fundamental theorem of asset pricing , 1994 .
[19] Constantinos Kardaras,et al. The numéraire portfolio in semimartingale financial models , 2007, Finance Stochastics.
[20] J. Jacod,et al. Grossissement initial, hypothese (H′) et theoreme de Girsanov , 1985 .
[21] M. Jeanblanc,et al. Default Times, Non-Arbitrage Conditions and Change of Probability Measures , 2008, 0812.4064.
[22] Anat R. Admati. The informational role of prices: A review essay , 1991 .
[23] Ruth J. Williams,et al. Introduction to Stochastic Integration , 1994 .
[24] C. Sin. Complications with stochastic volatility models , 1998, Advances in Applied Probability.
[25] J. Ruf,et al. HEDGING UNDER ARBITRAGE , 2010, 1003.4797.
[26] Editors , 1986, Brain Research Bulletin.
[27] A. Lo,et al. THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.
[28] Probabilités neutres au risque et asymétrie d'information , 1999 .
[29] P. Protter,et al. 1 Asset Price Bubbles in Complete Markets , 2006 .
[30] David Hobson,et al. Comparison results for stochastic volatility models via coupling , 2010, Finance Stochastics.
[31] Marc Yor,et al. Changes of filtrations and of probability measures , 1978 .
[32] Sara Biagini,et al. Utility maximization in incomplete markets for unbounded processes , 2005, Finance Stochastics.
[33] F. Delbaen,et al. The fundamental theorem of asset pricing for unbounded stochastic processes , 1998 .
[34] Delia Coculescu,et al. Default times, no-arbitrage conditions and changes of probability measures , 2012, Finance Stochastics.
[35] P. Protter. Stochastic integration and differential equations , 1990 .
[36] R. C. Merton,et al. Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.
[37] P. Protter,et al. ASSET PRICE BUBBLES IN INCOMPLETE MARKETS * , 2008 .
[38] Hans Föllmer,et al. The exit measure of a supermartingale , 1972 .
[39] Roy Radner,et al. Rational expectations in microeconomic models: An overview , 1982 .
[40] John P. Lehoczky,et al. Existence and Uniqueness of Multi-Agent Equilibrium in a Stochastic, Dynamic Consumption/Investment Model , 1990, Math. Oper. Res..
[41] A. Cherny,et al. ON THE MARTINGALE PROPERTY OF TIME-HOMOGENEOUS DIFFUSIONS , 2009 .
[42] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[43] I. Karatzas,et al. Relative arbitrage in volatility-stabilized markets , 2005 .
[44] E. Fernholz. Stochastic Portfolio Theory , 2002 .
[45] Kiyosi Itô,et al. Extension of Stochastic Integrals , 1987 .
[46] Darrell Duffie,et al. Stochastic Equilibria: Existence, Spanning Number, and the 'No Expected Financial Gain from Trade' Hypothesis , 1986 .
[47] W. Schachermayer,et al. THE BANACH SPACE OF WORKABLE CONTINGENT CLAIMS IN ARBITRAGE THEORY. L’ESPACE DE BANACH DES ACTIFS , 1998 .
[48] Hui Wang,et al. Utility maximization in incomplete markets with random endowment , 2001, Finance Stochastics.
[49] I. Karatzas,et al. Optimal Consumption from Investment and Random Endowment in Incomplete Semimartingale Markets , 2001, 0706.0051.
[50] Sanford J. Grossman. The Informational Role of Prices , 1990 .
[51] K. Parthasarathy,et al. Probability measures on metric spaces , 1967 .
[52] A Paul,et al. SAMUELSON, . Proof that properly anticipated prices fluctuate randomly, Industrial Management Review, . , 1965 .
[53] N. Ikeda,et al. A comparison theorem for solutions of stochastic differential equations and its applications , 1977 .
[54] A. Mijatović,et al. On the martingale property of certain local martingales , 2009, 0905.3701.
[55] T. Bielecki,et al. Credit Risk: Modeling, Valuation And Hedging , 2004 .
[56] W. Andrew,et al. LO, and A. , 1988 .
[57] Christophe Stricker,et al. Quasimartingales, martingales locales, semimartingales et filtration naturelle , 1977 .
[58] Gordan Zitkovic,et al. Financial equilibria in the semimartingale setting: Complete markets and markets with withdrawal constraints , 2007, Finance Stochastics.
[59] W. Schachermayer,et al. The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .