Statistical models of cell populations

Statistical models for the description of microbial population growth have been reviewed with emphasis on their features that make them useful for applications. Evidence is shown that the integrodifferential equations of population balance are solvable using approximate methods. Simulative techniques have been shown to be useful in dealing with growth situations for which the equations are not easily solved.

[1]  M. Richmond,et al.  Rate of growth of Bacillus cereus between divisions. , 1962, Journal of general microbiology.

[2]  O. Rahn A CHEMICAL EXPLANATION OF THE VARIABILITY OF THE GROWTH RATE , 1932, The Journal of general physiology.

[3]  H. Hulburt,et al.  Liouville Equations for Agglomeration and Dispersion Processes , 1969 .

[4]  A. L. Koch,et al.  A model for statistics of the cell division process. , 1962, Journal of general microbiology.

[5]  S. Fujita Kinetics of cellular proliferation. , 1962, Experimental cell research.

[6]  J. Collins THE DISTRIBUTION AND FORMATION OF PENICILLINASE IN A BACTERIAL POPULATION OF BACILLUS LICHENIFORMIS. , 1964, Journal of general microbiology.

[7]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[8]  P. Reilly,et al.  Estimation of parameters in population models for Schizosaccharomyces pombe from chemostat data , 1972, Biotechnology and bioengineering.

[9]  Tunc Geveci,et al.  Advanced Calculus , 2014, Nature.

[10]  C. Perret A New Kinetic Model of a Growing Bacterial Population , 1960 .

[11]  Alladi Ramakrishnan,et al.  Probability and Stochastic Processes , 1959 .

[12]  A. L. Koch On evidence supporting a deterministic process of bacterial growth. , 1966, Journal of general microbiology.

[13]  Doraiswami Ramkrishna,et al.  On the solution of statistical models of cell populations , 1971 .

[14]  E. Powell An outline of the pattern of bacterial generation times. , 1958, Journal of general microbiology.

[15]  P. Painter,et al.  Kinetics of Growth of Individual Cells of Escherichia coli and Azotobacter agilis , 1967, Journal of bacteriology.

[16]  Victor George Jenson,et al.  Mathematical Methods in Chemical Engineering , 1978 .

[17]  Doraiswami Ramkrishna,et al.  A puristic analysis of population balance—II. , 1973 .

[18]  Doraiswami Ramkrishna,et al.  Statistics and dynamics of procaryotic cell populations , 1967 .

[19]  D. Ramkrishna,et al.  Solution of population balance equations by MWR , 1977 .

[20]  Doraiswami Ramkrishna,et al.  Transient solution of the brownian coagulation equation by problem-specific polynomials , 1975 .

[21]  H. M. Tsuchiya,et al.  Dynamics of Microbial Cell Populations , 1966 .

[22]  H. E. Kubitschek,et al.  Normal distribution of cell generation rate. , 1962, Experimental cell research.

[23]  F. Stohlman,et al.  The kinetics of cellular proliferation , 1961 .

[24]  R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .

[25]  J. Bailey,et al.  Characterization of bacterial growth by means of flow microfluorometry. , 1977, Science.

[26]  E. Adolph,et al.  Growth in size of micro‐organisms measured from motion pictures I. Yeast, saccharomyces cerevisiae , 1932 .

[27]  P. Painter,et al.  Inequality of Mean Interdivision Time and Doubling Time , 1967 .

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  H. M. Tsuchiya,et al.  On the mass distribution model for microbial cell populations. , 1970, The Bulletin of mathematical biophysics.

[30]  James E. Bailey,et al.  Measurement of structured microbial population dynamics by flow microfluorometry , 1978 .

[31]  E. Powell A NOTE ON KOCH AND SCHAECHTER'S HYPOTHESIS ABOUT GROWTH AND FISSION OF BACTERIA. , 1964, Journal of general microbiology.

[32]  On problem-specific polynomials , 1973 .

[33]  Generation times of bacteria: real and artificial distributions. , 1969, Journal of general microbiology.

[34]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[35]  M. De Handbuch der Physik , 1957 .

[36]  E. Trucco,et al.  Mathematical models for cellular systems. The von foerster equation. Part II , 1965 .

[37]  Charles J. Mode,et al.  Multitype Branching Processes. , 1973 .

[38]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[39]  Kenny S. Crump,et al.  An Age-Dependent Branching Process with Correlations Among Sister Cells , 1969 .

[40]  On relationships between various distribution functions in balanced unicellular growth , 1968 .

[41]  Doraiswami Ramkrishna,et al.  Solution of population balance equations , 1971 .

[42]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[43]  S. K. Srinivasan,et al.  Stochastic theory and cascade processes , 1969 .

[44]  Doraiswami Ramkrishna,et al.  Monte Carlo simulation of microbial population growth , 1976 .

[45]  S. Katz,et al.  Some problems in particle technology: A statistical mechanical formulation , 1964 .

[46]  E. Powell,et al.  Growth rate and generation time of bacteria, with special reference to continuous culture. , 1956, Journal of general microbiology.

[47]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[48]  A. L. Koch,et al.  Growth, cell and nuclear divisions in some bacteria. , 1962, Journal of general microbiology.