On Eddy Viscosity, Energy Cascades, and the Horizontal Resolution of Gridded Satellite Altimeter Products*

Motivated by the recent interest in ocean energetics, the widespread use of horizontal eddy viscosity in models, and the promise of high horizontal resolution data from the planned wide-swath satellite altimeter, this paper explores the impacts of horizontal eddy viscosity and horizontal grid resolution on geostrophic turbulence, with a particular focus on spectral kinetic energy fluxes P(K) computed in the isotropic wavenumber (K) domain. The paper utilizes idealized two-layer quasigeostrophic (QG) models, realistic highresolution ocean general circulation models, and present-generation gridded satellite altimeter data. Adding horizontal eddy viscosity to the QG model results in a forward cascade at smaller scales, in apparent agreement with results from present-generation altimetry. Eddy viscosity is taken to roughly represent coupling of mesoscale eddies to internal waves or to submesoscale eddies. Filtering the output of either the QG or realistic models before computing P(K) also greatly increases the forward cascade. Such filtering mimics the smoothing inherent in the construction of present-generation gridded altimeter data. It is therefore difficult to say whether the forward cascades seen in present-generation altimeter data are due to real physics (represented here by eddy viscosity) or to insufficient horizontal resolution. The inverse cascade at larger scales remains in the models even after filtering, suggesting that its existence in the models and in altimeterdata is robust.However,themagnitudeofthe inverse cascadeis affectedbyfiltering,suggestingthat the wide-swath altimeter will allow a more accurate determination of the inverse cascade at larger scales as well as providing important constraints on smaller-scale dynamics.

[1]  G. Flierl,et al.  Cascade Inequalities for Forced-Dissipated Geostrophic Turbulence , 2007 .

[2]  John C. Ries,et al.  Chapter 1 Satellite Altimetry , 2001 .

[3]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[4]  Marika M. Holland,et al.  Ocean viscosity and climate , 2008 .

[5]  A. Thompson,et al.  Scaling Baroclinic Eddy Fluxes: Vortices and Energy Balance , 2005 .

[6]  M. McIntyre,et al.  Wave capture and wave–vortex duality , 2005, Journal of Fluid Mechanics.

[7]  R. Scott,et al.  An update on the wind power input to the surface geostrophic flow of the World Ocean , 2009 .

[8]  P. Müller A note on the variability of eddy diffusion coefficients in the ocean , 1979 .

[9]  Ragnar Fjørtoft,et al.  On the Changes in the Spectral Distribution of Kinetic Energy for Twodimensional, Nondivergent Flow , 1953 .

[10]  Carl Wunsch,et al.  The Work Done by the Wind on the Oceanic General Circulation , 1998 .

[11]  B. Arbic,et al.  Spectral Energy Fluxes in Geostrophic Turbulence: Implications for Ocean Energetics , 2007 .

[12]  C. Wunsch Ocean observations and the climate forecast problem , 2002 .

[13]  James C. McWilliams,et al.  The emergence of isolated coherent vortices in turbulent flow , 1984, Journal of Fluid Mechanics.

[14]  D. Stammer Global Characteristics of Ocean Variability Estimated from Regional TOPEX/POSEIDON Altimeter Measurements , 1997 .

[15]  P. L. Traon,et al.  AN IMPROVED MAPPING METHOD OF MULTISATELLITE ALTIMETER DATA , 1998 .

[16]  J. LaCasce Baroclinic vortices over a sloping bottom , 1996 .

[17]  Raffaele Ferrari,et al.  Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean , 2011 .

[18]  Gilles Reverdin,et al.  Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2 , 2000 .

[19]  R. Scott Mechanical energy flux to the surface geostrophic flow using TOPEX/Poseidon data , 1999 .

[20]  W. Dewar,et al.  Topographic inviscid dissipation of balanced flow , 2010 .

[21]  W. Schmitz On the World Ocean Circulation. Volume 1. Some Global Features / North Atlantic Circulation. , 1996 .

[22]  H. Hurlburt,et al.  Convergence of Laplacian diffusion versus resolution of an ocean model , 2005 .

[23]  J. LaCasce Surface Quasigeostrophic Solutions and Baroclinic Modes with Exponential Stratification , 2012 .

[24]  Inhomogeneous Two-Dimensional Turbulence in the Atmosphere , 1987 .

[25]  Ayon Sen,et al.  Global energy dissipation rate of deep‐ocean low‐frequency flows by quadratic bottom boundary layer drag: Computations from current‐meter data , 2008 .

[26]  Darran G. Furnival,et al.  Global Observations of Ocean-Bottom Subinertial Current Dissipation , 2013 .

[27]  G. Flierl,et al.  Baroclinically Unstable Geostrophic Turbulence in the Limits of Strong and Weak Bottom Ekman Friction: Application to Midocean Eddies , 2004 .

[28]  D. Olbers,et al.  On the dynamics of internal waves in the deep ocean , 1975 .

[29]  Craig M. Lee,et al.  Enhanced Turbulence and Energy Dissipation at Ocean Fronts , 2011, Science.

[30]  G. Lapeyre What Vertical Mode Does the Altimeter Reflect? On the Decomposition in Baroclinic Modes and on a Surface-Trapped Mode , 2009 .

[31]  K. Polzin Mesoscale Eddy–Internal Wave Coupling. Part I: Symmetry, Wave Capture, and Results from the Mid-Ocean Dynamics Experiment , 2008 .

[32]  H. Hurlburt,et al.  1/32° real-time global ocean prediction and value-added over 1/16° resolution , 2007 .

[33]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[34]  Paul D. Bates SWOT: The Surface Water and Ocean Topography Mission: Wide-Swath Altimetric Measurement of Water Elevation on Earth , 2012 .

[35]  G. Flierl,et al.  Nonlinear energy and enstrophy transfers in a realistically stratified ocean , 1980 .

[36]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[37]  Theodore G. Shepherd,et al.  Large-Scale Two-Dimensional Turbulence in the Atmosphere , 1983 .

[38]  C. Eden,et al.  Diagnosing the energy cascade in a model of the North Atlantic , 2007 .

[39]  Peter A. Rochford,et al.  The NRL Layered Global Ocean Model (NLOM) with an Embedded Mixed Layer Submodel: Formulation and Tuning , 2003 .

[40]  P. Müller On the diffusion of momentum and mass by internal gravity waves , 1976, Journal of Fluid Mechanics.

[41]  D. Chelton,et al.  Geographical Variability of the First Baroclinic Rossby Radius of Deformation , 1998 .

[42]  K. Polzin Mesoscale Eddy–Internal Wave Coupling. Part II: Energetics and Results from PolyMode , 2010 .

[43]  A. Thompson,et al.  Two-layer baroclinic eddy heat fluxes : Zonal flows and energy balance , 2007 .

[44]  C. Wunsch,et al.  Space and time scales of mesoscale motion in the western North Atlantic , 1977 .

[45]  John A. Goff,et al.  Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography , 2011 .

[46]  E. D. Brown,et al.  Observations of the Horizontal Interactions between the Internal Wave Field and the Mesoscale Flow , 1981 .

[47]  Carl Wunsch,et al.  The Vertical Partition of Oceanic Horizontal Kinetic Energy , 1997 .

[48]  I. Held,et al.  Eddy Amplitudes and Fluxes in a Homogeneous Model of Fully Developed Baroclinic Instability , 1995 .

[49]  Ayon Sen,et al.  Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models , 2009 .

[50]  R. Scott,et al.  Direct Evidence of an Oceanic Inverse Kinetic Energy Cascade from Satellite Altimetry , 2005 .

[51]  Jeffery R. Scott,et al.  The Location of Diapycnal Mixing and the Meridional Overturning Circulation , 2002 .

[52]  H. Hurlburt,et al.  A Numerical Study of Loop Current Intrusions and Eddy Shedding , 1980 .

[53]  B. Arbic,et al.  On quadratic bottom drag, geostrophic turbulence, and oceanic mesoscale eddies , 2008 .

[54]  Glenn R. Flierl,et al.  Models of vertical structure and the calibration of two-layer models , 1978 .

[55]  D. Chelton,et al.  Global observations of nonlinear mesoscale eddies , 2011 .

[56]  Peter Mtfller On the diffusion of momentum and mass by internal gravity waves , 1976 .

[57]  J. Marshall,et al.  Scales, Growth Rates, and Spectral Fluxes of Baroclinic Instability in the Ocean , 2011 .

[58]  D. Marshall,et al.  A Conjecture on the Role of Bottom-Enhanced Diapycnal Mixing in the Parameterization of Geostrophic Eddies , 2008 .

[59]  James C. McWilliams,et al.  Mesoscale to submesoscale transition in the California current system. Part III: Energy balance and flux , 2008 .

[60]  Lee-Lueng Fu,et al.  Observing Oceanic Submesoscale Processes From Space , 2008 .