ROTATING NONLINEAR SCHR¨ODINGER

We consider the computations of the action ground state for a rotating nonlinear Schr\"odinger equation. It reads as a minimization of the action functional under the Nehari constraint. In the focusing case, we identify an equivalent formulation of the problem which simplifies the constraint. Based on it, we propose a normalized gradient flow method with asymptotic Lagrange multiplier and establish the energy-decaying property. Popular optimization methods are also applied to gain more efficiency. In the defocusing case, we prove that the ground state can be obtained by the unconstrained minimization. Then the direct gradient flow method and unconstrained optimization methods are applied. Numerical experiments show the convergence and accuracy of the proposed methods in both cases, and comparisons on the efficiency are discussed. Finally, the relation between the action and the energy ground states are numerically investigated.

[1]  W. Liu,et al.  A constrained gentlest ascent dynamics and its applications to find excited states of Bose-Einstein condensates , 2022, J. Comput. Phys..

[2]  Chushan Wang Computing the least action ground state of the nonlinear Schrödinger equation by a normalized gradient flow , 2022, J. Comput. Phys..

[3]  L. Jeanjean,et al.  On global minimizers for a mass constrained problem , 2021, Calculus of Variations and Partial Differential Equations.

[4]  Paolo Tilli,et al.  Action versus energy ground states in nonlinear Schrödinger equations , 2021, Mathematische Annalen.

[5]  Yongyong Cai,et al.  Normalized Gradient Flow with Lagrange Multiplier for Computing Ground States of Bose-Einstein Condensates , 2021, SIAM J. Sci. Comput..

[6]  S. Cuccagna,et al.  A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II , 2020, Discrete & Continuous Dynamical Systems - S.

[7]  Daniel Peterseim,et al.  The J-method for the Gross–Pitaevskii eigenvalue problem , 2019, Numerische Mathematik.

[8]  Alex H. Ardila,et al.  Global Well-Posedness, Blow-Up and Stability of Standing Waves for Supercritical NLS with Rotation , 2020, Journal of Dynamics and Differential Equations.

[9]  Daniel Peterseim,et al.  Sobolev Gradient Flow for the Gross-Pitaevskii Eigenvalue Problem: Global Convergence and Computational Efficiency , 2018, SIAM J. Numer. Anal..

[10]  Jie Shen,et al.  Efficient SAV approach for imaginary time gradient flows with applications to one- and multi-component Bose-Einstein Condensates , 2019, J. Comput. Phys..

[11]  I. Nenciu,et al.  Stability and instability properties of rotating Bose–Einstein condensates , 2018, Letters in Mathematical Physics.

[12]  Jianxin Zhou,et al.  A Local Minimax Method Using Virtual Geometric Objects: Part I—For Finding Saddles , 2018, J. Sci. Comput..

[13]  Stephen Kershnar Ground , 2018, Desert Collapses.

[14]  Bruno Iannazzo,et al.  The Riemannian Barzilai–Borwein method with nonmonotone line search and the matrix geometric mean computation , 2018 .

[15]  Ionut Danaila,et al.  Computation of Ground States of the Gross-Pitaevskii Functional via Riemannian Optimization , 2017, SIAM J. Sci. Comput..

[16]  Xavier Antoine,et al.  Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods , 2016, J. Comput. Phys..

[17]  Weizhu Bao,et al.  A Regularized Newton Method for Computing Ground States of Bose–Einstein Condensates , 2015, Journal of Scientific Computing.

[18]  Xiaofei Zhao,et al.  Modulation equations approach for solving vortex and radiation in nonlinear Schrodinger equation , 2016, 1605.00888.

[19]  E. Faou,et al.  Convergence of a Normalized Gradient Algorithm for Computing Ground States , 2016, 1603.02658.

[20]  Xiaofei Zhao,et al.  On multichannel solutions of nonlinear Schrödinger equations: algorithm, analysis and numerical explorations , 2014, 1404.1159.

[21]  Hanquan Wang,et al.  A projection gradient method for computing ground state of spin-2 Bose-Einstein condensates , 2014, Journal of Computational Physics.

[22]  W. Bao,et al.  Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.

[23]  I-Liang Chern,et al.  Exploring ground states and excited states of spin-1 Bose-Einstein condensates by continuation methods , 2011, J. Comput. Phys..

[24]  Ya-Xiang Yuan,et al.  Optimization Theory and Methods: Nonlinear Programming , 2010 .

[25]  Ionut Danaila,et al.  A New Sobolev Gradient Method for Direct Minimization of the Gross--Pitaevskii Energy with Rotation , 2009, SIAM J. Sci. Comput..

[26]  Yvon Maday,et al.  Numerical Analysis of Nonlinear Eigenvalue Problems , 2009, J. Sci. Comput..

[27]  Mechthild Thalhammer,et al.  A minimisation approach for computing the ground state of Gross-Pitaevskii systems , 2009, J. Comput. Phys..

[28]  A. Fetter Rotating trapped Bose-Einstein condensates , 2008, 0801.2952.

[29]  Xudong Yao,et al.  Numerical Methods for Computing Nonlinear Eigenpairs: Part II. Non-Iso-Homogeneous Cases , 2008, SIAM J. Sci. Comput..

[30]  S.-L. Chang,et al.  Computing wave functions of nonlinear Schrödinger equations: A time-independent approach , 2007, J. Comput. Phys..

[31]  Eric Cancès,et al.  Ground state of the time-independent Gross-Pitaevskii equation , 2007, Comput. Phys. Commun..

[32]  Qiang Du,et al.  Dynamics of Rotating Bose-Einstein Condensates and its Efficient and Accurate Numerical Computation , 2006, SIAM J. Appl. Math..

[33]  Yun Xu,et al.  An improved search-extension method for computing multiple solutions of semilinear PDEs , 2005 .

[34]  Weizhu Bao,et al.  Ground, Symmetric and Central Vortex States in Rotating Bose-Einstein Condensates , 2005 .

[35]  Dmitry Pelinovsky,et al.  Convergence of Petviashvili's Iteration Method for Numerical Approximation of Stationary Solutions of Nonlinear Wave Equations , 2004, SIAM J. Numer. Anal..

[36]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[37]  I. Rodnianski,et al.  The nonlinear Schrödinger equation , 2008 .

[38]  Masahito Ohta,et al.  Instability of standing waves for nonlinear Schrödinger equations with potentials , 2003, Differential and Integral Equations.

[39]  L. Jeanjean,et al.  A remark on least energy solutions in RN , 2002 .

[40]  Masahito Ohta,et al.  Structure of Positive Radial Solutions to Scalar Field Equations with Harmonic Potential , 2002 .

[41]  Robert L. Pego,et al.  Spectrally Stable Encapsulated Vortices for Nonlinear Schrödinger Equations , 2001, J. Nonlinear Sci..

[42]  S. Cuccagna Stabilization of solutions to nonlinear Schrödinger equations , 2001 .

[43]  Reika Fukuizumi,et al.  Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential , 2001 .

[44]  Yongxin Li,et al.  A Minimax Method for Finding Multiple Critical Points and Its Applications to Semilinear PDEs , 2001, SIAM J. Sci. Comput..

[45]  Succi,et al.  Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  L. Carr,et al.  Stationary solutions of the one-dimensional nonlinear Schrodinger equation: II. Case of attractive nonlinearity , 1999, cond-mat/9911178.

[47]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[48]  L. Carr,et al.  Stationary solutions of the one-dimensional nonlinear Schroedinger equation: I. Case of repulsive nonlinearity , 1999, cond-mat/9911177.

[49]  Goong Chen,et al.  A high-linking algorithm for sign-changing solutions of semilinear elliptic equations , 1999 .

[50]  D. Feder,et al.  Numerical approach to the ground and excited states of a Bose-Einstein condensed gas confined in a completely anisotropic trap , 1998, cond-mat/9811344.

[51]  Luc Bergé,et al.  Wave collapse in physics: principles and applications to light and plasma waves , 1998 .

[52]  Marcos Raydan,et al.  The Barzilai and Borwein Gradient Method for the Large Scale Unconstrained Minimization Problem , 1997, SIAM J. Optim..

[53]  H. Matsumoto,et al.  Spectral Analysis of Schrödinger Operators with Magnetic Fields , 1996 .

[54]  Y. Choi,et al.  A mountain pass method for the numerical solution of semilinear elliptic problems , 1993 .

[55]  A. Soffer,et al.  Multichannel nonlinear scattering for nonintegrable equations II. The case of anisotropic potentials and data , 1992 .

[56]  W. Rother,et al.  Nonlinear scalar field equations , 1992, Differential and Integral Equations.

[57]  Michael I. Weinstein,et al.  Multichannel nonlinear scattering for nonintegrable equations , 1990 .

[58]  K. Murawski,et al.  Solitary waves in plasmas and in the atmosphere , 1989 .

[59]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[60]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[61]  J. Shatah,et al.  Instability of nonlinear bound states , 1985 .

[62]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[63]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[64]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, II existence of infinitely many solutions , 1983 .

[65]  P. Lions,et al.  Orbital stability of standing waves for some nonlinear Schrödinger equations , 1982 .

[66]  Walter A. Strauss,et al.  Existence of solitary waves in higher dimensions , 1977 .

[67]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[68]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .