Direct selected configuration interaction using a hole-particle formalism

Abstract The outlines of a direct selected configuration interaction algorithm are given. The selected determinants φ I are identified as products of α and β spins multiple excitations from the reference determinant φ 0 , in a hole-particle formalism. This formulation is compact and in the action of the αα (or ββ) part of H on the current vector avoids consideration of the excitation processes, saving significant computation time. A few examples illustrate the performance of the method, taken from NH 3 for which full-CI is known, or a more realistic problem, NiCO 2 , involving a large number of active MOs (61) and electrons (26). The possible uses of the algorithm in approximate CI methods like CIPSI are discussed.

[1]  W. Goddard,et al.  Correlation‐consistent configuration interaction: Accurate bond dissociation energies from simple wave functions , 1988 .

[2]  C. Bauschlicher,et al.  THE COMPUTATION OF C-C AND N-N BOND DISSOCIATION ENERGIES FOR SINGLY, DOUBLY, AND TRIPLY BONDED SYSTEMS , 1991 .

[3]  W. Goddard,et al.  New predictions for singlet-triplet gaps of substituted carbenes , 1987 .

[4]  Stephen R. Langhoff,et al.  Full CI benchmark calculations on N2, NO, and O2: A comparison of methods for describing multiple bonds , 1987 .

[5]  Robert J. Harrison,et al.  Approximating full configuration interaction with selected configuration interaction and perturbation theory , 1991 .

[6]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[7]  R. Cimiraglia Second order perturbation correction to CI energies by use of diagrammatic techniques: An improvement to the CIPSI algorithm , 1985 .

[8]  Michel Dupuis,et al.  Evaluation of molecular integrals over Gaussian basis functions , 1976 .

[9]  W. Goddard,et al.  Correlation‐consistent singlet–triplet gaps in substituted carbenes , 1988 .

[10]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[11]  Ernest R. Davidson,et al.  Configuration interaction calculations on the nitrogen molecule , 1974 .

[12]  Josef Paldus,et al.  Vectorizable approach to molecular CI problems using determinantal basis , 1989 .

[13]  S. Peyerimhoff,et al.  Ab initio CI study of the stability and electronic spectrum of the HOCl molecule , 1977 .

[14]  I. Shavitt,et al.  An application of perturbation theory ideas in configuration interaction calculations , 1968 .

[15]  F. Illas,et al.  Approximate natural orbitals and the convergence of a second order multireference many‐body perturbation theory (CIPSI) algorithm , 1988 .

[16]  Per E. M. Siegbahn,et al.  A new direct CI method for large CI expansions in a small orbital space , 1984 .

[17]  Robert J. Buenker,et al.  Energy extrapolation in CI calculations , 1975 .

[18]  W. Goddard,et al.  Electron correlation, basis sets, and the methylene singlet–triplet gap , 1987 .

[19]  Robert J. Buenker,et al.  Individualized configuration selection in CI calculations with subsequent energy extrapolation , 1974 .

[20]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .

[21]  Renzo Cimiraglia,et al.  Recent advances in multireference second order perturbation CI: The CIPSI method revisited , 1987 .

[22]  J. Malrieu,et al.  Observable-dedicated molecular orbitals. I. Method and illustrations , 1991 .

[23]  Peter J. Knowles,et al.  A new determinant-based full configuration interaction method , 1984 .

[24]  N. Handy,et al.  Full CI calculations on BH, H2O, NH3, and HF , 1983 .

[25]  Robert J. Harrison,et al.  An efficient implementation of the full-CI method using an (n–2)-electron projection space , 1989 .

[26]  Peter J. Knowles,et al.  Very large full configuration interaction calculations , 1989 .

[27]  S. Nagase,et al.  An intermolecular perturbation approach to hydrogen bondings in systems in the ground and excited electronic states , 1974 .

[28]  Peter J. Knowles,et al.  Unlimited full configuration interaction calculations , 1989 .

[29]  C. Bauschlicher,et al.  Benchmark full configuration-interaction calculations on HF and NH2 , 1986 .

[30]  W. Goddard,et al.  Bonding in transition-metal-methylene complexes. 2. (RuCH2)+, a complex exhibiting low-lying methylidene-like and carbene-like states. , 1986, Journal of the American Chemical Society.

[31]  Stefano Evangelisti,et al.  Convergence of an improved CIPSI algorithm , 1983 .

[32]  C. Bauschlicher,et al.  Full CI benchmark calculations on CH3 , 1987 .

[33]  Nicholas C. Handy,et al.  Exact solution (within a double-zeta basis set) of the schrodinger electronic equation for water , 1981 .

[34]  Robert J. Buenker,et al.  Comparison of perturbatively corrected energy results from multiple reference double‐excitation configuration‐interaction method calculations with exact full configuration‐interaction benchmark values , 1990 .

[35]  Josef Paldus,et al.  Coupled Cluster Approach , 1980 .

[36]  Francesc Illas,et al.  Selected versus complete configuration interaction expansions , 1991 .

[37]  J. Malrieu,et al.  Improved non-valence virtual orbitals for CI calculations , 1990 .