Updating of uncertain joint models using the Lack-Of-Knowledge theory

The objective of this work is to develop a modeling strategy for assemblies involving multiple joints in an aeronautical predesign context. In the process of designing large structures, industrial engineers usually get around computational limitations by using submodeling techniques. When dealing with uncertain parameters, additional numerical difficulties appear due to the increase in the problem's size. In order to consider phenomena which vary during the global representation of the submodeling process, we propose a modeling approach for the scattering of these phenomena based on the Lack-Of-Knowledge theory. The proposed strategy is illustrated by the case of a multiple-joint assembly.

[1]  Pierre Ladevèze,et al.  On lack-of-knowledge theory in structural mechanics , 2010 .

[2]  G. Meda,et al.  Aggressive submodelling of stress concentrations , 1999 .

[3]  Christian Soize Random matrix theory for modeling uncertainties in computational mechanics , 2005 .

[4]  H. Huth,et al.  Influence of Fastener Flexibility on the Prediction of Load Transfer and Fatigue Life for Multiple-Row Joints , 1986 .

[5]  Manolis Papadrakakis,et al.  Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation , 1999 .

[6]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo Method , 1981 .

[7]  Y. Ben-Haim Info-Gap Decision Theory: Decisions Under Severe Uncertainty , 2006 .

[8]  J. R. Miller,et al.  Global-local analysis of large-scale composite structures using finite element methods , 1996 .

[9]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[10]  Pierre Ladevèze,et al.  Application of a posteriori error estimation for structural model updating , 1999 .

[11]  F. Thouverez,et al.  ANALYSIS OF MECHANICAL SYSTEMS USING INTERVAL COMPUTATIONS APPLIED TO FINITE ELEMENT METHODS , 2001 .

[12]  Gregory B. Beacher,et al.  Stochastic FEM In Settlement Predictions , 1981 .

[13]  Ramon E. Moore Interval arithmetic and automatic error analysis in digital computing , 1963 .

[14]  C. E. Knight,et al.  The specified boundary stiffness/force SBSF method for finite element subregion analysis , 1988 .

[15]  P. Prescott,et al.  Monte Carlo Methods , 1964, Computational Statistical Physics.

[16]  Sherrill B. Biggers,et al.  Identifying global/local interface boundaries using an objective search method , 1996 .

[17]  Sondipon Adhikari,et al.  Distributed parameter model updating using the Karhunen–Loève expansion , 2010 .

[18]  G. I. Schuëller,et al.  Computational stochastic mechanics – recent advances , 2001 .

[19]  Pierre Ladevèze,et al.  Lack of knowledge in structural model validation , 2006 .

[20]  Laurent Champaney,et al.  Definition and updating of simplified models of joint stiffness , 2011 .

[21]  George J. Klir,et al.  Generalized information theory: aims, results, and open problems , 2004, Reliab. Eng. Syst. Saf..

[22]  Sondipon Adhikari,et al.  Wishart Random Matrices in Probabilistic Structural Mechanics , 2008 .

[23]  Pierre Ladevèze,et al.  On a strategy for the reduction of the lack of knowledge (LOK) in model validation , 2006, Reliab. Eng. Syst. Saf..

[24]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[25]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[26]  Chris L. Pettit,et al.  Uncertainties and dynamic problems of bolted joints and other fasteners , 2005 .

[27]  Christian Soize A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics , 2005 .

[28]  David Moens,et al.  A survey of non-probabilistic uncertainty treatment in finite element analysis , 2005 .

[29]  L. Faravelli Response‐Surface Approach for Reliability Analysis , 1989 .